×

Dynamic behaviors of a class of HIV compartmental models. (English) Zbl 1352.92143

Summary: Based on heterogeneities in drug efficacy (either spatial or phenotypic), two HIV compartmental models were proposed in [D. S. Callaway and A. S. Perelson, Bull. Math. Biol. 64, No. 1, 29–64 (2002; Zbl 1334.92227)] to study the HIV virus dynamics under drug treatment. In this paper, we provide a global analysis on the two models, including the positivity and boundedness of solutions and the global stability of equilibrium solutions. In particular, we show that when the basic reproduction number \(R_0\leqslant 1\) (for which the infection equilibrium does not exist), the infection-free equilibrium is globally asymptotically stable; while when \(R_0>1\) (for which the infection equilibrium exists), the infection equilibrium is globally asymptotically stable.

MSC:

92D30 Epidemiology
92C60 Medical epidemiology

Citations:

Zbl 1334.92227
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Bonhoeffer, S.; Coffin, J. M.; Nowak, M. A., Human immunodeficiency virus drug therapy and virus load, J Virol, 71, 3275-3278, (1997)
[2] Callaway, D. S.; Perelson, A. S., HIV-1 infection and low steady state viral loads, B Math Biol, 64, 29-64, (2002) · Zbl 1334.92227
[3] Castillo-Chavez C, Thieme HR. Asymptotically autonomous epidemic models. Mathematical Population Dynamics: Analysis of Heterogeneity, I. Theory of Epidemics, Canada; 1995, p. 33-50.
[4] Elaiw, A. M., Global properties of a class of HIV models, Nonlinear Anal-Real, 11, 2253-2263, (2010) · Zbl 1197.34073
[5] Furtado, M. R.; Callaway, D. S.; Phair, J. P.; Kunstman, K. J.; Stanton, J. L.; Macken, C. A., Persistence of HIV-1 transcription in peripheral-blood mononuclear cells in patients receiving potent antiretroviral therapy, New Engl J Med, 340, 1614-1622, (1999)
[6] Haworth, S. J.; Christofalo, B.; Anderson, R. D.; Dunkle, L. M., A single-dose study to access the penetration of stavudine into human cerebrospinal fluid in adults, J Acquir Immune Defic Syndr Hum Retrovirol, 17, 235-238, (1998)
[7] Hirsch, W. M.; Hanisch, H.; Gabriel, J. P., Differential equation models of some parasitic infections: methods for the study of asymptotic behaviour, Commun Pur Appl Math, 38, 733-753, (1985) · Zbl 0637.92008
[8] Huang, Y.; Liu, D.; Wu, H., Hierarchical Bayesian methods for estimation of parameters in a longitudinal HIV dynamic system, Biometrics, 62, 413-423, (2006) · Zbl 1097.62128
[9] Jiang, X.; Yu, P.; Yuan, Z.; Zou, X., Dynamics of an HIV-1 therapy model of fighting a virus with another virus, J Biol Dyn, 3, 387-409, (2009) · Zbl 1342.92095
[10] Kim, R. B.; Fromm, M. F.; Wandel, C.; Leake, B.; Wood, A. J.; Roden, D. M., The drug transporter P-glycoprotein limits oral absorption and brain entry of HIV-1 protease inhibitors, J Clin Invest, 101, 289-294, (1998)
[11] LaSalle JP. The stability of dynamical systems. In: CBMS-NSF Regional conference Series in Applied Mathematics, SIAM Philadephia; 1976.
[12] Lewis, L. L.; Venzon, D.; Church, J.; Farley, M.; Wheeler, S.; Keller, A., Lamivudine in children with human immunodeficiency virus infection: a phase I/II study, J Infect Dis, 174, 16-25, (1996)
[13] Perelson, A. S.; Essunger, P.; Cao, Y.; Vesanen, M.; Hurley, A.; Saksela, K., Decay characteristics of HIV-1-infected compartments during combination therapy, Nature, 387, 188-191, (1997)
[14] Perelson, A. S.; Nelson, P. W., Mathematical analysis of HIV-1 dynamics in vivo, SIAM Rev, 41, 3-44, (1999) · Zbl 1078.92502
[15] Perelson, A. S.; Neumann, A. U.; Markowitz, M.; Leonard, J. M.; Ho, D. D., HIV-1 dynamics in vivo: viron clearance rate, infected cell life-span and viral generation time, Science, 271, 1582-1586, (1996)
[16] Perno, C. F.; Newcomb, F. M.; Davis, D. A.; Aquaro, S.; Humphrey, R. W.; Calio, R., Relative potency of protease inhibitor in monocytes/macrophages acutely and chronically infected with human immunodeficiency virus, J Infect Dis, 178, 413-422, (1998)
[17] Puddu, P.; Fais, S.; Luciani, F.; Gherardi, G.; Dupuis, M. L.; Romagnoli, G., Interferon-gamma uo-regulates expression and activity of P-glycoprotein in human peripheral blood monocyte-derived macrophages, Lab Invest, 79, 1299-1309, (1999)
[18] Schlegel PN, Chang SK. Physiology of male reproduction: the testes, epididymis, and ductus deferens. Campbell’s Urology. 7th ed. P.C. Walsh: A.B. Retik; 1998.
[19] Sharkey, M. E.; Teo, L.; Greenough, T.; Sharova, N.; Luzuriaga, K.; Sullivan, J. L., Persistence of episomal HIV-1 infection intermediates in patients on highly active anti-retroviral therapy, Nat Med, 6, 76-81, (2000)
[20] Smith, H. L., Dynamical systems: an introduction to theory of competitive and cooperative systems, Mathematical surveys and monographs, (1995), American Mathematical Society
[21] Wei, X.; Ghosh, S. K.; Taylor, M. E.; Johnson, V. A.; Emini, E. A.; Deutsch, P., Viral dynamics in human immunodeficiency virus type 1 infection, Nature, 373, 117-122, (1995)
[22] Yu, P.; Zou, X., Bifurcation analysis on an HIV-1 model with constant injection of recombinant, Int J Bifurcat Chaos, 22, 1250062, (2012), (21pages) · Zbl 1270.34145
[23] Zhang, L.; Ramratnam, B.; Tenner-Racz, K.; He, Y.; Vesanen, M.; Lewin, S., Quantifying residual HIV-1 replication in patients receiving combination antiretroviral therapy, New Engl J Med, 340, 1605-1613, (1999)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.