# zbMATH — the first resource for mathematics

A Diophantine inequality with four squares and one $$k$$th power of primes. (English) Zbl 07088789
Summary: Let $$k\geq 5$$ be an odd integer and $$\eta$$ be any given real number. We prove that if $$\lambda_1$$, $$\lambda_2$$, $$\lambda_3$$, $$\lambda_4$$, $$\mu$$ are nonzero real numbers, not all of the same sign, and $$\lambda_1/\lambda_2$$ is irrational, then for any real number $$\sigma$$ with $$0<\sigma<1/(8\vartheta(k))$$, the inequality $|\lambda_1p_1^2+\lambda_2p_2^2+\lambda_3p_3^2+\lambda_4p_4^2+\mu p_5^k+\eta|<\Bigl(\max_{1\leq j\leq 5}p_j\Bigr)^{-\sigma}$ has infinitely many solutions in prime variables $$p_1,p_2,\cdots,p_5$$, where $$\vartheta(k)=3\times 2^{(k-5)/2}$$ for $$k=5,7,9$$ and $$\vartheta(k)=[(k^2+2k+5)/8]$$ for odd integer $$k$$ with $$k\geq 11$$. This improves a recent result in W. Ge and T. Wang [Acta Arith. 182, No. 2, 183–199 (2018; Zbl 1422.11205)].
##### MSC:
 11D75 Diophantine inequalities 11P55 Applications of the Hardy-Littlewood method
##### Keywords:
Diophantine inequalities; Davenport-Heilbronn method; prime
Zbl 1422.11205
Full Text:
##### References:
 [1] Baker, A., On some diophantine inequalities involving primes, J. Reine Angew. Math. 228 (1967), 166-181 [2] Baker, R. C.; Harman, G., Diophantine approximation by prime numbers, J. Lond. Math. Soc., II. Ser. 25 (1982), 201-215 [3] Bourgain, J., On the Vinogradov mean value, Proc. Steklov Inst. Math. 296 (2017), 30-40 translated from Tr. Mat. Inst. Steklova 296 2017 36-46 [4] Cook, R. J., The value of additive forms at prime arguments, J. Théor. Nombres Bordx. 13 (2001), 77-91 [5] Davenport, H.; Heilbronn, H., On indefinite quadratic forms in five variables, J. Lond. Math. Soc. 21 (1946), 185-193 [6] Ge, W.; Wang, T., On Diophantine problems with mixed powers of primes, Acta Arith. 182 (2018), 183-199 [7] Harman, G., Trigonometric sums over primes I, Mathematika 28 (1981), 249-254 [8] Harman, G., Diophantine approximation by prime numbers, J. Lond. Math. Soc., II. Ser. 44 (1991), 218-226 [9] Harman, G., The values of ternary quadratic forms at prime arguments, Mathematika 51 (2004), 83-96 [10] Heath-Brown, D. R., Weyl’s inequality, Hua’s inequality, and Waring’s problem, J. Lond. Math. Soc., II. Ser. 38 (1988), 216-230 [11] Hua, L.-K., Some results in additive prime-number theory, Q. J. Math., Oxf. Ser. 9 (1938), 68-80 [12] Languasco, A.; Zaccagnini, A., A Diophantine problem with a prime and three squares of primes, J. Number Theory 132 (2012), 3016-3028 [13] Languasco, A.; Zaccagnini, A., A Diophantine problem with prime variables, Highly Composite: Papers in Number Theory V. Kumar Murty, R. Thangadurai Ramanujan Mathematical Society Lecture Notes Series 23, Ramanujan Mathematical Society, Mysore (2016), 157-168 [14] Li, W.; Wang, T., Diophantine approximation with four squares and one $$k$$-th power of primes, J. Math. Sci. Adv. Appl. 6 (2010), 1-16 [15] Li, W.; Wang, T., Diophantine approximation with two primes and one square of prime, Chin. Q. J. Math. 27 (2012), 417-423 [16] Matomäki, K., Diophantine approximation by primes, Glasg. Math. J. 52 (2010), 87-106 [17] Mu, Q., Diophantine approximation with four squares and one $$k$$th power of primes, Ramanujan J. 39 (2016), 481-496 [18] Mu, Q., One Diophantine inequality with unlike powers of prime variables, Int. J. Number Theory 13 (2017), 1531-1545 [19] Mu, Q.; Qu, Y., A Diophantine inequality with prime variables and mixed power, Acta Math. Sin., Chin. Ser. 58 (2015), 491-500 Chinese [20] Ramachandra, K., On the sums $$\sum\nolimits_{j=1}^K\lambda_jf_j(p_j)$$, J. Reine Angew. Math. 262/263 (1973), 158-165 [21] Vaughan, R. C., Diophantine approximation by prime numbers. I, Proc. Lond. Math. Soc., III. Ser. 28 (1974), 373-384 [22] Vaughan, R. C., The Hardy-Littlewood Method, Cambridge Tracts in Mathematics 125, Cambridge University Press, Cambridge (1997) [23] Vinogradov, I. M., Representation of an odd number as a sum of three primes, C. R. (Dokl.) Acad. Sci. URSS, n. Ser. 15 (1937), 169-172
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.