×

On the instability of ground states for a generalized Davey-Stewartson system. (English) Zbl 1499.35552

Summary: In this paper, we give a simpler proof for Ohta’s theorems [M. Ohta, Differ. Integral Equ. 8, No. 7, 1775–1788 (1995; Zbl 0827.35122)] on the strong instability of the ground states for a generalized Davey-Stewartson system. In addition, a sufficient condition is given to ensure the nonexistence of a minimizer for a variational problem, which is related to the stability of the standing waves of the Davey-Stewartson system. This result shows that the stability result of Ohta [loc. cit.] is sharp.

MSC:

35Q55 NLS equations (nonlinear Schrödinger equations)
35B35 Stability in context of PDEs
35J10 Schrödinger operator, Schrödinger equation
35J20 Variational methods for second-order elliptic equations
35J91 Semilinear elliptic equations with Laplacian, bi-Laplacian or poly-Laplacian

Citations:

Zbl 0827.35122
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Berestycki, H.; Cazenave, T., Instabilite des etats stationnaires dans les equations de Schrödinger et de Klein-Gordon non linearires, C R Acad Sci Paris, Seire I, 293, 489-492 (1981) · Zbl 0492.35010
[2] Cazenave, T., Semilinear Schrödinger equations, Courant Lecture Notes in Mathematics (2003), New York: New York University, Courant Institute of Mathematical Sciences, New York · Zbl 1055.35003
[3] Cipolatti, R., On the existence of standing waves for a Davey-Stewartson system, Comm Ppartial Differ Equ, 17, 967-988 (1992) · Zbl 0762.35109
[4] Cipolatti, R., On the instability of ground states for a Davey-Stewartson system, Ann Inst Henri Poincare Phys Théory, 58, 85-104 (1993) · Zbl 0784.35106
[5] Davey, A.; Stewartson, K., On three-dimensional packets of surface waves, Proc R Soc London A, 338, 101-110 (1974) · Zbl 0282.76008
[6] Gan, Z.; Zhang, J., Sharp threshold of global existence and instability of standing wave for a Davey-Stewartson system, Comm Math Phys, 283, 93-125 (2008) · Zbl 1158.35416
[7] Ghidaglia, J. M.; Saut, J. C., On the initial value problem for the Davey-Stewartson systems, Nonlinearity, 3, 475-506 (1990) · Zbl 0727.35111
[8] Guo, B. L.; Wang, B. X., The Cauchy problem for Davey-Stewartson systems, Comm Pure Appl Math, 52, 1477-1490 (1999) · Zbl 1026.35096
[9] Li, Y.; Guo, B. L., Existence and decay of weak solutions to degenerate Davey-Stewartson equaitons, Acta Math Sci, 22B, 3, 302-310 (2002) · Zbl 1003.35115
[10] Ohta, M., Stability of standing waves for the generalized Davey-Stewartson system, J Dyn Differ Eqs, 6, 325-334 (1994) · Zbl 0805.35098
[11] Ohta, M., Instability of standing waves for the generalized Davey-Stewartson system, Ann Inst Henri Poincaré, 62, 69-80 (1995) · Zbl 0839.35012
[12] Ohta, M., Blow-up solutions and strong instability of standing waves for the generalized Davey-Stewartson system in \({\mathbb{R}^2} \), Ann Inst Henri Poincare, 63, 111-117 (1995) · Zbl 0832.35132
[13] Ohta, M., Stability and instability of standing waves for the generalized Davey-Stewartson system, Differ Integral Equ, 8, 1775-1788 (1995) · Zbl 0827.35122
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.