Hoang Le Truong The eventual index of reducibility of parameter ideals and the sequentially Cohen-Macaulay property. (English) Zbl 1451.13070 Arch. Math. 112, No. 5, 475-488 (2019). Reviewer: Takesi Kawasaki (Tokyo) MSC: 13H10 13D45 13A15 13H15 PDF BibTeX XML Cite \textit{Hoang Le Truong}, Arch. Math. 112, No. 5, 475--488 (2019; Zbl 1451.13070) Full Text: DOI
Mast Zohouri, Maryam; Ahmadi Amoli, Khadijeh; Faramarzi, Saadatollah Relative Cohen-Macaulay filtered modules with a view toward relative Cohen-Macaulay modules. (English) Zbl 1424.13028 Math. Rep., Buchar. 20(70), No. 3, 301-318 (2018). Reviewer: Aleksandr G. Aleksandrov (Moskva) MSC: 13D45 13E05 13C14 PDF BibTeX XML Cite \textit{M. Mast Zohouri} et al., Math. Rep., Buchar. 20(70), No. 3, 301--318 (2018; Zbl 1424.13028) Full Text: arXiv
Herzog, Jürgen; Hibi, Takayuki; Ohsugi, Hidefumi Binomial ideals. (English) Zbl 1403.13004 Graduate Texts in Mathematics 279. Cham: Springer (ISBN 978-3-319-95347-2/hbk; 978-3-319-95349-6/ebook). xix, 321 p. (2018). Reviewer: Amir Mafi (Sanandaj and Tehran) MSC: 13A02 13P05 13P10 13P20 13P25 16D25 PDF BibTeX XML Cite \textit{J. Herzog} et al., Binomial ideals. Cham: Springer (2018; Zbl 1403.13004) Full Text: DOI
Enescu, Florian; Malec, Sara Intersection algebras for principal monomial ideals in polynomial rings. (English) Zbl 1330.13008 J. Algebra Appl. 14, No. 7, Article ID 1550108, 23 p. (2015). Reviewer: Catalin Ciuperca (Fargo) MSC: 13A30 05E40 PDF BibTeX XML Cite \textit{F. Enescu} and \textit{S. Malec}, J. Algebra Appl. 14, No. 7, Article ID 1550108, 23 p. (2015; Zbl 1330.13008) Full Text: DOI arXiv
Nguyen Tu Cuong; Goto, Shiro; Hoang Le Truong Hilbert coefficients and sequentially Cohen-Macaulay modules. (English) Zbl 1271.13048 J. Pure Appl. Algebra 217, No. 3, 470-480 (2013). Reviewer: Peter Schenzel (Halle) MSC: 13H10 13A30 13B22 13H15 PDF BibTeX XML Cite \textit{Nguyen Tu Cuong} et al., J. Pure Appl. Algebra 217, No. 3, 470--480 (2013; Zbl 1271.13048) Full Text: DOI arXiv
Cuong, Nguyen Tu; Cuong, Doan Trung On sequentially Cohen-Macaulay modules. (English) Zbl 1139.13011 Kodai Math. J. 30, No. 3, 409-428 (2007). Reviewer: Peter Schenzel (Halle) MSC: 13H10 13C13 13H15 PDF BibTeX XML Cite \textit{N. T. Cuong} and \textit{D. T. Cuong}, Kodai Math. J. 30, No. 3, 409--428 (2007; Zbl 1139.13011) Full Text: DOI arXiv
Stanley, Richard P. Combinatorics and commutative algebra. 2nd ed. (English) Zbl 1157.13302 Progress in Mathematics 41. Basel: Birkhäuser (ISBN 0-8176-4369-9). x, 180 p. (2005). MSC: 13C13 05-02 13-02 55U10 PDF BibTeX XML Cite \textit{R. P. Stanley}, Combinatorics and commutative algebra. 2nd ed. Basel: Birkhäuser (2005; Zbl 1157.13302)
Miller, Ezra; Sturmfels, Bernd Combinatorial commutative algebra. (English) Zbl 1090.13001 Graduate Texts in Mathematics 227. New York, NY: Springer (ISBN 0-387-23707-0/pbk). xiv, 417 p. (2005). Reviewer: R. J. Shank (Canterbury) MSC: 13-02 13-01 05-01 05-02 05E99 13F20 13C40 PDF BibTeX XML Cite \textit{E. Miller} and \textit{B. Sturmfels}, Combinatorial commutative algebra. New York, NY: Springer (2005; Zbl 1090.13001) Backlinks: MO
Novik, Isabella On face numbers of manifolds with symmetry. (English) Zbl 1092.52009 Adv. Math. 192, No. 1, 183-208 (2005). Reviewer: Julian Pfeifle (Barcelona) MSC: 52B70 52B05 57Q15 52B12 PDF BibTeX XML Cite \textit{I. Novik}, Adv. Math. 192, No. 1, 183--208 (2005; Zbl 1092.52009) Full Text: DOI
Villarreal, Rafael H. Monomial algebras. (English) Zbl 1002.13010 Pure and Applied Mathematics, Marcel Dekker. 238. New York, NY: Marcel Dekker. ix, 455 p. (2001). Reviewer: Martin Kreuzer (Regensburg) MSC: 13F55 13P10 13-02 13F20 PDF BibTeX XML Cite \textit{R. H. Villarreal}, Monomial algebras. New York, NY: Marcel Dekker (2001; Zbl 1002.13010)
Herzog, J.; Reiner, V.; Welker, V. Componentwise linear ideals and Golod rings. (English) Zbl 0967.13018 Mich. Math. J. 46, No. 2, 211-223 (1999). MSC: 13F55 13C14 PDF BibTeX XML Cite \textit{J. Herzog} et al., Mich. Math. J. 46, No. 2, 211--223 (1999; Zbl 0967.13018) Full Text: DOI
Takayama, Yukihide; Hibi, Takayuki Steinitz’ theorem analogue for two-dimensional Cohen-Macaulay complexes. (English) Zbl 0922.05044 Adv. Appl. Math. 22, No. 2, 200-218 (1999). Reviewer: Siamak Yassemi (Tehran) MSC: 05C75 52B70 13C14 13D25 PDF BibTeX XML Cite \textit{Y. Takayama} and \textit{T. Hibi}, Adv. Appl. Math. 22, No. 2, 200--218 (1999; Zbl 0922.05044) Full Text: DOI