Bounded convergence for perturbed minimization problems. (English) Zbl 1153.49316

Summary: Bounded convergence results are established for sequences of convex functions of the form \(F(\cdot ,0)\). As particular cases, one obtains convergence results for functions of the following types: \(F(\cdot ,T(\cdot))\),\( f+g\circ T\), \(\max\{f,g\circ T\}\), \(g\circ T\), \(f + g\), \(\max\{f,g\}\). In the case of the sum we obtain the well-known theorem of G. Beer and R. Lucchetti [Math. Oper. Res. 17, No. 3, 715–726 (1992; Zbl 0767.49011)] as well as the recent result obtained by A. Eberhard and R. Wenczel [J. Convex Anal. 7, No. 1, 47–71 (2000; Zbl 0961.49005)] (and reduce to that last result when the space is complete).


49K40 Sensitivity, stability, well-posedness
90C31 Sensitivity, stability, parametric optimization
46N10 Applications of functional analysis in optimization, convex analysis, mathematical programming, economics
52A40 Inequalities and extremum problems involving convexity in convex geometry
Full Text: DOI


[1] DOI: 10.1137/0803016 · Zbl 0793.49005 · doi:10.1137/0803016
[2] DOI: 10.1080/02331939008843576 · Zbl 0719.49013 · doi:10.1080/02331939008843576
[3] Azé D, Recent Developments in Optimization pp pp. 17–35– (1995)
[4] Azé D, J. Convex Anal. 3 pp 309– (1996)
[5] DOI: 10.1090/S0002-9939-1990-0982400-8 · doi:10.1090/S0002-9939-1990-0982400-8
[6] Beer G, Topologies on Closed and Closed Convex Sets, Kluwer Academic Publishers Group (1993) · Zbl 0792.54008
[7] DOI: 10.1287/moor.17.3.715 · Zbl 0767.49011 · doi:10.1287/moor.17.3.715
[8] Dunford N, Linear Operators, Part I: General Theory, Interscience Publishers (1958)
[9] Eberhard A, J. Convex Anal. 7 pp 47– (2000)
[10] Holmes R, Geometric Functional Analysis and its Applications, Springer-Verlag pp No. 24– (1975) · Zbl 0336.46001
[11] DOI: 10.1090/S0002-9947-1981-0628449-5 · doi:10.1090/S0002-9947-1981-0628449-5
[12] DOI: 10.1090/S0002-9939-1991-1068129-X · doi:10.1090/S0002-9939-1991-1068129-X
[13] DOI: 10.1007/BF02189795 · Zbl 0903.49015 · doi:10.1007/BF02189795
[14] DOI: 10.1023/A:1024432532388 · Zbl 1055.49011 · doi:10.1023/A:1024432532388
[15] Penot J-P, Université de Pau (2004)
[16] Penot J-P Zălinescu C 2003 Fenchel–Legendre transform and variational convergences preprint, Université de Pau, December
[17] DOI: 10.1287/moor.1.2.130 · Zbl 0418.52005 · doi:10.1287/moor.1.2.130
[18] Zălinescu C, Z. Oper. Res. Ser. A-B 31 pp 79– (1987)
[19] DOI: 10.1142/9789812777096 · doi:10.1142/9789812777096
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.