Representation theorems of the dual of Lebesgue-Bochner function spaces. (English) Zbl 0959.46024

Let \((B,|\cdot|)\) be a Banach space with dual space \(B'\), and let \((\Omega,{\mathcal A},\mu)\) be a positive measure space. The Banach space \(B\) is said to have a Radon-Nikodým Property (RNP) with respect to \((\Omega,{\mathcal A},\mu)\) if \(B\) has the RNP with respect to every finite measure space \((A,A\cap{\mathcal A},\mu_A)\) with \(\mu(A)< \infty\). \(L^p(\mu, B)\) denotes the space of \(B\)-valued functions \(f\) with \(\|f\|_p= \{\int_\Omega|f|^p d\mu\}^{1/p}< \infty\).
The main results of this paper include statements identifying the dual space \((L^p(\mu, B))'\) with \(L^{p'}(\mu, B')\), where \(1< p<\infty\), \((1/p)+ (1/p')= 1\), if and only if \(B'\) has RNP with respect to \((\Omega,{\mathcal A},\mu)\).
The paper includes references to earlier publications in which conditions on the measure \(\mu\) are required for deriving the representation of the dual spaces. In particular, it is indicated that the results of this paper are based on results stated by the author in Sci. China, Ser. A 39, No. 10, 1034-1041 (1996; Zbl 0868.46014) and J. Xiamen Univ., Nat. Sci. 36, No. 4, 499-502 (1997; Zbl 0902.46053).


46E40 Spaces of vector- and operator-valued functions
46E30 Spaces of measurable functions (\(L^p\)-spaces, Orlicz spaces, Köthe function spaces, Lorentz spaces, rearrangement invariant spaces, ideal spaces, etc.)
28B05 Vector-valued set functions, measures and integrals
46B22 Radon-Nikodým, Kreĭn-Milman and related properties
Full Text: DOI


[1] Diestel, J., Uhl, Jr. J.J., Vector measures, Math. Surveys, 1977, (15): 1. · Zbl 0369.46039
[2] Dunford, N.; Schwartz, J. T., Linear Operators (I), 95-372 (1957), London: Interscience, London
[3] Bochner, S.; Taylor, A. E., Linear functionals on certain spaces of abstractly valued functions, Ann. Math., 39, 913-913 (1938) · JFM 64.0383.01 · doi:10.2307/1968472
[4] Gretsky, N. E.; Uhl, J. J., Bounded linear operators on Banach functions, Trana. Amer. Math. Soc., 167, 263-263 (1972) · Zbl 0238.46038 · doi:10.2307/1996138
[5] Leonard, I. E.; Sundaresan, K., Smoothness and duality in L^p(E,μ), J. Math. Anal. Appl., 46, 513-513 (1974) · Zbl 0284.46025 · doi:10.1016/0022-247X(74)90257-1
[6] Bourbaki, N., Integration, Chaps. I/3-V (1952), Paris: Hermann, Paris
[7] Ionescu, Tulcea, A.; Ionescu, Tulcea, C., On the lifting property (I), J. Math. Anal. Appl., 3, 537-537 (1961) · Zbl 0122.11604 · doi:10.1016/0022-247X(61)90075-0
[8] Ioneacu, Tulcea, A.; Ionescu, Tulcea, C., On the lifting property (II), J. Math. Mech., ll, 5, 773-773 (1962) · Zbl 0122.11701
[9] Zhibo, Hu; Bor-Luh, Lin, Extremal structure of the unit ball of L^p(μ, X)*, J. Math. Anal. Appl., 200, 567-567 (1996) · Zbl 0877.46020 · doi:10.1006/jmaa.1996.0225
[10] Tiexin, Guo, The Radon-Nikodym property of conjugate spaces and the ω* -μ-equivalence theorem of ω-μ-measurable functions, Science in China, 39, 10, 1034-1034 (1996) · Zbl 0868.46014
[11] Tiexin, Guo, A characterization for a random normed module to be random reflexive, J. of Xiamen Univ. (Natural Science Edition) (in Chinese), 26, 4, 499-499 (1997) · Zbl 0902.46053
[12] Tiexin, Guo, Extension theorems of continuous random linear operators on random domains, J. Math. Anal. Appl., 193, 1, 15-15 (1995) · Zbl 0879.47018 · doi:10.1006/jmaa.1995.1221
[13] Tiexin, Guo, Module homomorphisms on random normed modules, Chinese Northeastern Math. J., 12, 1, 102-102 (1996) · Zbl 0858.60012
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.