On Ono’s problem for quadratic fields. (English) Zbl 0780.11050

Für einen quadratischen Zahlkörper \(k\) sei \(d_ k\) die Diskriminante, \(h_ k\) die Klassenzahl und \(M_ k\) die Minkowski- Schranke von \(k\) (\(M_ k=\sqrt{d_ k}/2\), falls \(k\) reell; \(M_ k=2\sqrt{-d_ k}/\pi\), falls \(k\) imaginär). Der Autor bestimmt (unter Voraussetzung von GRH) alle quadratischen Zahlkörper \(k\) mit folgender Eigenschaft: \(h_ k\) ist ungerade, und \((d_ k/p)\neq 1\) für alle Primzahlen \(p\leq M_ k\) (es gibt 42 solche Körper). Resultate von ähnlichem Typ wurden von S. Louboutin, R. A. Mollin und H. C. Williams erzielt [siehe Can. J. Math. 44, 824-842 (1992; Zbl 0771.11039)] und die dort zitierte Literatur.


11R11 Quadratic extensions
11R29 Class numbers, class groups, discriminants


Zbl 0771.11039
Full Text: DOI


[1] M. G. Leu : On a conjecture of Ono on real quadratic fields. Proc. Japan Acad., 63A, 323-326(1987). · Zbl 0659.12004 · doi:10.3792/pjaa.63.323
[2] M. G. Leu : On a problem of Ono and quadratic non-residue. Nagoya Math. J., 115, 185-198 (1989). · Zbl 0659.12005
[3] R. A. Mollin and H. C. Williams: Quadratic non-residue and prime-producing polynomials. Canada. Math. Bull., 32, 474-478 (1989). · Zbl 0714.11066 · doi:10.4153/CMB-1989-068-1
[4] Oesterle: Versions effectives du theorem de Chebotalev sous L’Hypothese de Riemann Generalise. Soc. Math. France Ast6risque, 61, 165-167 (1979). · Zbl 0418.12005
[5] T. Ono: A problem on quadratic fields. Proc. Japan Acad., 64A, 78-79 (1988). · Zbl 0662.12004 · doi:10.3792/pjaa.64.78
[6] J. B. Rosser and L. Schoenfeld: Approxiamate formulas for some functions of prime numbers. Illinois J. Math., 6, 64-94 (1962). · Zbl 0122.05001
[7] H. M. Stark: A complete determination of the complex quadratic fields of class number one. Michigan Math. J., 14, 1-27 (1967). · Zbl 0148.27802 · doi:10.1307/mmj/1028999653
[8] K. Yosidome and Y. Asaeda: On Ono’s problem on quadratic fields. Proc. Japan Acad., 67A, 348-352 (1991). · Zbl 0746.11046 · doi:10.3792/pjaa.67.348
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.