Hilbert, Norman Lagrange cylinders and minimal annuli. (Lagrange Zylinder und minimale Annuli.) (German) Zbl 1285.53068 Bonner Mathematische Schriften 398. Bonn: Univ. Bonn, Mathematisches Institut; Bonn: Univ. Bonn, Mathematisch-Naturwissenschaftliche Fakultät (Diss.). 72 p. (2010). The author studies the question when two Lagrangian submanifolds in a symplectic manifold are isotopic. To make the problem more accessible, he assumes that the symplectic manifold is a cotangent bundle and that the Lagrangian submanifolds are Lagrange cylinders. To construct the isotopy he uses minimal surfaces, as they are easier to work with than pseudoholomorphic curves. Reviewer: Karl Heinz Dovermann (Honolulu) MSC: 53D12 Lagrangian submanifolds; Maslov index 57R52 Isotopy in differential topology Keywords:Lagrange submanifolds; isotopy × Cite Format Result Cite Review PDF Full Text: Link