Möller, Sven; Scheithauer, Nils Dimension formulae and generalised deep holes of the Leech lattice vertex operator algebra. (English) Zbl 07623024 Ann. Math. (2) 197, No. 1, 221-288 (2023). MSC: 17B69 11F11 11F27 PDF BibTeX XML Cite \textit{S. Möller} and \textit{N. Scheithauer}, Ann. Math. (2) 197, No. 1, 221--288 (2023; Zbl 07623024) Full Text: DOI arXiv OpenURL
Möller, Sven Natural construction of ten Borcherds-Kac-Moody algebras associated with elements in \(M_{23}\). (English) Zbl 1481.17037 Commun. Math. Phys. 383, No. 1, 35-70 (2021). Reviewer: David Ridout (Melbourne) MSC: 17B67 17B69 PDF BibTeX XML Cite \textit{S. Möller}, Commun. Math. Phys. 383, No. 1, 35--70 (2021; Zbl 1481.17037) Full Text: DOI arXiv OpenURL
van Ekeren, Jethro; Lam, Ching Hung; Möller, Sven; Shimakura, Hiroki Schellekens’ list and the very strange formula. (English) Zbl 1492.17027 Adv. Math. 380, Article ID 107567, 34 p. (2021). Reviewer: Matthew Krauel (Sacramento) MSC: 17B69 PDF BibTeX XML Cite \textit{J. van Ekeren} et al., Adv. Math. 380, Article ID 107567, 34 p. (2021; Zbl 1492.17027) Full Text: DOI arXiv OpenURL
van Ekeren, Jethro; Möller, Sven; Scheithauer, Nils R. Dimension formulae in genus zero and uniqueness of vertex operator algebras. (English) Zbl 1477.17088 Int. Math. Res. Not. 2020, No. 7, 2145-2204 (2020). MSC: 17B69 PDF BibTeX XML Cite \textit{J. van Ekeren} et al., Int. Math. Res. Not. 2020, No. 7, 2145--2204 (2020; Zbl 1477.17088) Full Text: DOI arXiv OpenURL
van Ekeren, Jethro; Möller, Sven; Scheithauer, Nils R. Construction and classification of holomorphic vertex operator algebras. (English) Zbl 1447.81181 J. Reine Angew. Math. 759, 61-99 (2020). Reviewer: Olaf Ninnemann (Uffing am Staffelsee) MSC: 17B69 PDF BibTeX XML Cite \textit{J. van Ekeren} et al., J. Reine Angew. Math. 759, 61--99 (2020; Zbl 1447.81181) Full Text: DOI arXiv OpenURL
Möller, Sven A cyclic orbifold theory for holomorphic vertex operator algebras and applications. (English) Zbl 1378.17044 Darmstadt: TU Darmstadt, Fachbereich Mathematik (Diss.). 276 p. (2016). Reviewer: Matthew Krauel (Sacramento) MSC: 17B69 81R10 17B67 PDF BibTeX XML Cite \textit{S. Möller}, A cyclic orbifold theory for holomorphic vertex operator algebras and applications. Darmstadt: TU Darmstadt, Fachbereich Mathematik (Diss.) (2016; Zbl 1378.17044) Full Text: arXiv Link Link OpenURL