zbMATH — the first resource for mathematics

A three-dimensional finite element model for the control of certain nonlinear bioreactors. (English) Zbl 0982.76065
Summary: This paper deals with the dynamics of nonlinear distributed parameter fixed-bed bioreactors described by two nonlinear partial differential (evolution) equations. The true spatially three-dimensional situation is considered instead of usual one-dimensional approximation. This enables one to take into account the effects of flow profile and the true location of measurement transducer. The (output) evolution of the corresponding open-loop control system is simulated. Furthermore, we are able to examine the associated closed-loop system with respect to the relevant output function. Especially, the asymptotic output tracking is found to be successful by applying the usual process based on a feedback linearization.

76M10 Finite element methods applied to problems in fluid mechanics
76Z05 Physiological flows
93C20 Control/observation systems governed by partial differential equations
92C10 Biomechanics
Full Text: DOI
[1] and ?Sur la representation d’etat des systemes a parametres repartis?, in: Les Systemes de Regulation, (ed.), Masson, France, 1996.
[2] Charlet, SIAM J. Control Optim. 29 pp 38– (1991) · Zbl 0739.93021 · doi:10.1137/0329002
[3] and A Mathematical Introduction to Fluid Mechanics, Springer, Berlin, 1990. · doi:10.1007/978-1-4684-0364-0
[4] and An Introduction to Infinite-Dimensional Linear Systems Theory, Texts in Applied Mathematics, Springer, Berlin, 1995. · doi:10.1007/978-1-4612-4224-6
[5] and Mathematical Analysis and Numerical Methods for Science and Technology, Vols. 4 and 6, Springer, Berlin, 1988, 1989.
[6] ?Contribution to the analysis and control of distributed parameter systems with application to (bio)chemical processes and robotics?, Thesis, Universite Catholique de Louvain, Belgium, 1994.
[7] and ?Dynamical analysis of a class of distributed parameter fixed bed reactors, Proc. CDC’95, pp. 3225-3230, 1995.
[8] Goldstein, Dyn. Systems Appl. 5 pp 197– (1996)
[9] Grizzle, IEEE Trans. Automat. Control 39 pp 1782– (1994) · Zbl 0818.93031 · doi:10.1109/9.317102
[10] Helfrich, Numer. Math. 51 pp 559– (1987) · Zbl 0648.65078 · doi:10.1007/BF01400356
[11] Nonlinear Control Systems, Springer, Berlin, 1989. · doi:10.1007/978-3-662-02581-9
[12] Logemann, SIAM J. Control Optim. 35 pp 78– (1997) · Zbl 0873.93044 · doi:10.1137/S0363012994275920
[13] and ?Controller design for a nonlinear distributed parameter system via a collocation approximation?, in: Proc. IFAC Symp. on Nonlinear Control System Design, NOLCOS’92 (M. Fliess, ed.), pp. 447-452, Bordeaux, France, 1992.
[14] Nihtilä, J. Simulation Practise Theory 5 pp 199– (1996) · Zbl 05471540 · doi:10.1016/S0928-4869(96)00008-0
[15] and Introduction to Numerical Analysis, Springer, Berlin, 1980. · doi:10.1007/978-1-4757-5592-3
[16] Tali-Maamar, Math. Comput. Simulation 35 pp 303– (1993) · doi:10.1016/0378-4754(93)90061-X
[17] Tervo, SIAM J. Numer. Anal. 35 pp 1230– (1998) · Zbl 0914.65100 · doi:10.1137/S0036142995291330
[18] Tervo, J. Math. Systems Estimation Control 8 pp 483– (1999)
[19] Galerkin Finite Element Methods for Parabolic Problems, Springer, Berlin, 1984. · Zbl 0528.65052
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.