Barros-Neto, J.; Gelfand, I. M. Fundamental solutions for the Tricomi operator. II. (English) Zbl 1017.35081 Duke Math. J. 111, No. 3, 561-584 (2002). Reviewer: Elena Gavrilova (Sofia) MSC: 35M10 35A08 PDF BibTeX XML Cite \textit{J. Barros-Neto} and \textit{I. M. Gelfand}, Duke Math. J. 111, No. 3, 561--584 (2002; Zbl 1017.35081) Full Text: DOI
Getzler, Ezra A Darboux theorem for Hamiltonian operators in the formal calculus of variations. (English) Zbl 1100.32008 Duke Math. J. 111, No. 3, 535-560 (2002). Reviewer: Michal Fečkan (Bratislava) MSC: 32G34 37K05 37K30 35Q53 55P62 PDF BibTeX XML Cite \textit{E. Getzler}, Duke Math. J. 111, No. 3, 535--560 (2002; Zbl 1100.32008) Full Text: DOI
Varagnolo, M.; Vasserot, E. Standard modules of quantum affine algebras. (English) Zbl 1011.17012 Duke Math. J. 111, No. 3, 509-533 (2002). Reviewer: Stefano Capparelli (Roma) MSC: 17B37 16G20 PDF BibTeX XML Cite \textit{M. Varagnolo} and \textit{E. Vasserot}, Duke Math. J. 111, No. 3, 509--533 (2002; Zbl 1011.17012) Full Text: DOI
Sarnak, P.; Zaharescu, A. Some remarks on Landau-Siegel zeros. (English) Zbl 1008.11033 Duke Math. J. 111, No. 3, 495-507 (2002). Reviewer: Matti Jutila (Turku) MSC: 11M20 11M26 PDF BibTeX XML Cite \textit{P. Sarnak} and \textit{A. Zaharescu}, Duke Math. J. 111, No. 3, 495--507 (2002; Zbl 1008.11033) Full Text: DOI
Lysenko, Sergey Local geometrized Rankin-Selberg method for \(\text{GL}(n\)). (English) Zbl 1080.11040 Duke Math. J. 111, No. 3, 451-493 (2002). Reviewer: J. G. M. Mars (Utrecht) MSC: 11F70 11M38 11R39 11S37 22E50 22E55 PDF BibTeX XML Cite \textit{S. Lysenko}, Duke Math. J. 111, No. 3, 451--493 (2002; Zbl 1080.11040) Full Text: DOI Euclid
Peeva, Irena; Stillman, Mike Toric Hilbert schemes. (English) Zbl 1067.14005 Duke Math. J. 111, No. 3, 419-449 (2002). Reviewer: Peter Schenzel (Halle) MSC: 14C05 13D40 14M25 PDF BibTeX XML Cite \textit{I. Peeva} and \textit{M. Stillman}, Duke Math. J. 111, No. 3, 419--449 (2002; Zbl 1067.14005) Full Text: DOI
Tsuzuki, Nobuo Morphisms of \(F\)-isocrystals and the finite monodromy theorem for unit-root \(F\)-isocrystals. (English) Zbl 1055.14022 Duke Math. J. 111, No. 3, 385-418 (2002). MSC: 14F30 11G25 14F10 PDF BibTeX XML Cite \textit{N. Tsuzuki}, Duke Math. J. 111, No. 3, 385--418 (2002; Zbl 1055.14022) Full Text: DOI