×

On the evaluation of certain two-dimensional singular integrals with Cauchy kernels. (English) Zbl 0541.41033

The authors consider product formulas of interpolatory type for the two- dimensional Cauchy principal value integral: \[ I(f;\eta_ 1,\eta_ 2)=\int^{1}_{-1}\int^{1}_{-1}\omega(x,y)\frac{f(x,y)}{(x-\eta_ 1)(y-\eta_ 2)}dx dy \] where: \(\eta_ 1,\eta_ 2\in(-1,1)\), \(\omega(x,y)=\omega_ 1(x).\omega_ 2(y)\) and \(\omega_ 1(x)\) and \(\omega_ 2(y)\) are two absolutely integrable weight functions. The integral is approximated by \[ F_{n,m}(f;\eta_ 1,\eta_ 2)=\sum^{n}_{i=0}\sum^{m}_{j=0}A_ i^{(1)}(\eta_ 1)A_ j^{(2)}(\eta_ 2)f(x_ i,y_ j) \] where the nodes \(\{x_ i\}\) and \(\{y_ j\}\) are the zeros of the Chebyshev polynomials of the first kind, commonly named ”classical” abscissas, or the Clenshaw points, often called ”practical” abscissas. Convergence results for these rules are presented.

MSC:

41A55 Approximate quadratures
41A17 Inequalities in approximation (Bernstein, Jackson, Nikol’skiĭ-type inequalities)
42B20 Singular and oscillatory integrals (Calderón-Zygmund, etc.)
PDFBibTeX XMLCite
Full Text: DOI EuDML

References:

[1] Abramowitz, M.: Handbook of Mathematical Functions. Nat. Bur. Stand. Appl. Math. Sez. No. 55. U.S. Govt. Printing Office, Washington D.C. 1964 · Zbl 0171.38503
[2] Chawla, M.M., Kumar, S.: Convergence of quadratures for Cauchy principal value integrals. Computing23, 67-72 (1979) · Zbl 0415.65017 · doi:10.1007/BF02252614
[3] Elliott, D., Paget, D.F.: On the convergence of a quadrature rule for evaluating certain Cauchy principal value integrals. Numer. Math.23, 311-319 (1975). Addendum: Numer. Math.25, 287-289 (1976) · Zbl 0313.65019 · doi:10.1007/BF01438258
[4] Elliott, D., Paget, D.F.: Gauss type quadrature rules for Cauchy principal value integrals. Math. Comput.33, 301-309 (1979) · Zbl 0415.65019 · doi:10.1090/S0025-5718-1979-0514825-2
[5] Kalandiya, A.I.: On a direct method of solution of an equation in wing theory and its application to the theory of elasticity. Math. Sb.42, 249-272 (1957) (Russian).
[6] Katznelson, Y.: An Introduction to Harmonic Analysis. New York: John Wiley and Sons 1968 · Zbl 0169.17902
[7] Lorentz, G.G.: Approximation of Functions. New York: Holt, Rinehart and Winston 1966 · Zbl 0153.38901
[8] McCabe, J.H., Phillips, G.M.: On a certain class of Lebesgue constants. BIT13, 434-442 (1973) · Zbl 0274.41002 · doi:10.1007/BF01933407
[9] Meinardus, G.: Approximation of Functions: Theory and Numerical Methods. Berlin-Heidelberg-New York: Springer 1967 · Zbl 0152.15202
[10] Monegato, G.: The numerical evaluation of one-dimensional Cauchy principal value integrals. Computing29, 337-354 (1982) · Zbl 0485.65017 · doi:10.1007/BF02246760
[11] Monegato, G.: Convergence of product formulas for the numerical evaluation of certain two-dimensional Cauchy principal value integrals. Numer. Math.43, 161-173 (1984) · Zbl 0524.41016 · doi:10.1007/BF01390121
[12] Muskhelishvili, N.I.: Singular Integral Equations. Groningen, Holland: Noordhoff 1953 · Zbl 0051.33203
[13] ?e?ko, M.A.: Convergence of cubature processes for a two-dimensional singular integral. Dokl. Akad. Nauk USSR23, 293-297 (1979) (Russian) · Zbl 0406.41020
[14] Sloan, I.M., Smith, W.E.: Product integration with the Clenshaw-Curtis and related points. Numer. Math.30, 415-428 (1978) · Zbl 0367.41015 · doi:10.1007/BF01398509
[15] Sezgö, G.: Orthogonal Polynomials. Amer. Math. Soc. Colloquium Publications, Vol. 23, Providence R.I. 1975
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.