×

A subdomain collocation method based on Voronoi domain partition and reproducing kernel approximation. (English) Zbl 1173.74484

Summary: A subdomain collocation reproducing kernel approximation method is proposed. Subdomains are constructed by nonoverlapping Voronoi cells and a local weak form is defined over these subdomains. The standard RKPM shape functions are used directly for approximation, while weighting functions of the subdomain collocation method hold a constant value of unit only over a specific Voronoi cell. The body integration of the local weak form is now converted into much cheaper and efficient contour integration along the boundaries of Voronoi cells. It does not need to impose traction free boundary conditions explicitly in contrast to point collocation method. Furthermore, the method provides a natural background structure for performing h-adaptivity analysis straightforwardly. All these features constitute the subdomain collocation method a promising alternative to standard Galerkin method and point collocation method. Some elastostatics examples are presented to demonstrate the effectiveness, the convergence property, and the adaptivity performance of present method.

MSC:

74S30 Other numerical methods in solid mechanics (MSC2010)
74K10 Rods (beams, columns, shafts, arches, rings, etc.)
74B05 Classical linear elasticity

Software:

Triangle
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Belytschko, T.; Lu, Y. Y.; Gu, L., Element-free Galerkin methods, Int. J. Numer. Methods Engrg., 37, 229-256 (1994) · Zbl 0796.73077
[2] Liu, W. K.; Jun, S.; Zhang, Y. F., Reproducing kernel particle methods, Int. J. Numer. Methods Engrg., 20, 1081-1106 (1995) · Zbl 0881.76072
[3] Melenk, J. M.; Babuska, I., The partition of unity finite element method: basic theory and applications, Comput. Methods Appl. Mech. Engrg., 139, 289-314 (1999) · Zbl 0881.65099
[4] Atluri, S. N.; Kim, H. G.; Cho, J. Y., A critical assessment of the truly meshless local Petrov-Galerkin (MLPG) and local boundary integral equation (LBIE) methods, Comput. Mech., 24, 348-372 (1999) · Zbl 0977.74593
[5] Monaghan, J. J., An introduction to SPH, Comput. Phys. Commun., 48, 89-96 (1988) · Zbl 0673.76089
[6] C.A. Duarte, J.T. Oden, hp clounds—a meshless method to solve boundary-value problems, Technical Reprot 95-05, Texas Institute for Computational and Applied Mathematics, University of Texas at Austin, 1995.; C.A. Duarte, J.T. Oden, hp clounds—a meshless method to solve boundary-value problems, Technical Reprot 95-05, Texas Institute for Computational and Applied Mathematics, University of Texas at Austin, 1995.
[7] Aluru, N. R., A point collocation method based on reproducing kernel approximations, Int. J. Numer. Methods Engrg., 47, 1083-1121 (2000) · Zbl 0960.74078
[8] Zhang, X.; Song, K. Z.; Lu, M. W.; Liu, X., Meshless methods based on collocation with radial basis functions, Comput. Mech., 26, 333-343 (2000) · Zbl 0986.74079
[9] Zienkiewicz, O. C.; Taylor, R. L., The Finite Element Method (1991), McGraw-Hill: McGraw-Hill London · Zbl 0991.74002
[10] Shewchuk, J. R., Delaunay refinement algorithms for triangular mesh generation, Comput. Geomet., 22, 21-74 (2002) · Zbl 1016.68139
[11] Ruppert, J., A Delaunay refinement algorithm for quality 2-dimensional mesh generation, J. Algorithms, 18, 548-585 (1995) · Zbl 0828.68122
[12] Dolbow, J.; Belytschko, T., Volumetric locking in the element free Galerkin method, Int. J. Numer. Methods Engrg., 46, 925-942 (1999) · Zbl 0967.74079
[13] Chen, J. S.; Wu, C. T.; Yoon, S.; You, Y., A stabilized conforming nodal integration for Galerkin mesh-free methods, Int. J. Numer. Methods Engrg., 50, 435-466 (2001) · Zbl 1011.74081
[14] Chen, J. S.; Yoon, S.; Wu, C. T., Non-linear version of stabilized conforming nodal integration for Galerkin mesh-free methods, Int. J. Numer. Methods Engrg., 53, 2587-2615 (2002) · Zbl 1098.74732
[15] Zhou, J. X.; Wen, J. B.; Zhang, H. Y.; Zhang, L., A nodal integration and post-processing technique based on Voronoi diagram for Galerkin meshless methods, Comput. Methods Appl. Mech. Engrg., 192, 3831-3843 (2003) · Zbl 1054.74746
[16] Zhou, J. X.; Wang, X. M.; Zhang, Z. Q.; Zhang, L., On some enrichments of reproducing kernel particle method, Int. J. Comput. Methods, 1, 3, 1-15 (2004) · Zbl 1179.74184
[17] Zhou, J. X.; Wang, X. M.; Zhang, Z. Q.; Zhang, L., Explicit 3-D RKPM shape functions in terms of kernel function moments for accelerated computation, Comput. Methods Appl. Mech. Engrg., 194, 1027-1035 (2005) · Zbl 1137.74453
[18] Timoshenko, S. P.; Goodier, J. N., Theory of Elasticity (1970), McGraw-Hill: McGraw-Hill New York · Zbl 0266.73008
[19] Lu, H. S.; Chen, J. S., Adaptive Galerkin particle method, Lecture Notes Comput. Sci. Engrg., 26, 251-267 (2002) · Zbl 1090.65547
[20] Zhang, Z. Q.; Zhou, J. X.; Wang, X. M.; Zhang, Y. F.; Zhang, L., h-adaptivity analysis based on multiple scale reproducing kernel particle method, Appl. Math. Mech.-English Edition, 26, 1064-1071 (2005) · Zbl 1144.74385
[21] Lee, S. H.; Kom, H. J., Two scale meshfree method for the adaptivity of 3-D stress concentration problems, Comput. Mech., 26, 376-387 (2000) · Zbl 0986.74076
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.