×

Nested and self-adaptive Bézier parameterizations for shape optimization. (English) Zbl 1123.65303

Summary: This article is a sequel of the work of J.-A. Désidéri [Hierarchical optimum-shape algorithms using embedded Bézier parameterizations, in: Y. Kuznetsov et al., (Ed.), Numerical Methods for Scientific Computing, Variational Problems and Applications, CIMNE, Barcelona (2003)], in which we defined formally a hierarchical shape optimization method based on a multi-level shape representation by nested Bézier parameterizations (FAMOSA), and of J.-A. Désidéri and A. Janka [Multi-level shape parameterization for aerodynamic optimization - application to drag and noise reduction of transonic/supersonic business jet, in: E. Heikkola et al., (Ed.), European Congress on Computational Methods in Applied Sciences and Engineering (ECCOMAS 2004), Jyväskyla, 24–28 (2004)] where we conducted some preliminary numerical experiments of shape optimization in aerodynamics.
Here, we are testing the full multi-level optimum-shape algorithm (analogous in logical structure to the classical full multigrid method). Second, we propose a technique for parameterization self-adaptivity. Both methodological enhancements are assessed by novel numerical experiments on an inverse shape model problem, confirming both are very effective.

MSC:

65K10 Numerical optimization and variational techniques
49Q10 Optimization of shapes other than minimal surfaces
49M37 Numerical methods based on nonlinear programming
76N25 Flow control and optimization for compressible fluids and gas dynamics
76M25 Other numerical methods (fluid mechanics) (MSC2010)
PDFBibTeX XMLCite
Full Text: DOI Link

References:

[1] Wesseling, P., An Introduction to Multigrid Methods (1992), John Wiley & Sons, (Corrected Reprint: Philadelphia, R.T. Edwards, Inc., 2004) · Zbl 0760.65092
[2] T.W. Sederberg, Computer Aided geometric Design. <http://tom.cs.byu.edu/ tom/>; T.W. Sederberg, Computer Aided geometric Design. <http://tom.cs.byu.edu/ tom/> · Zbl 0885.68131
[3] (Farin, G.; Rheinboldt, W.; Siewiorek, D., Curves and Surfaces for Computer-Aided Geometric Design - A Practical Guide (1990), Academic Press: Academic Press Boston)
[4] (Périaux, J.; Bugeda, G.; Chaviaropoulos, P. K.; Giannakoglou, K.; Lantéri, S.; Mantel, B., Optimum Aerodynamic Design & Parallel Navier-Stokes Computations, ECARP European Computational Aerodynamics Research Project, Notes on Numerical Fluid Mechanics (1998), Vieweg: Vieweg Braunschweig/Wiesbaden, Germany) · Zbl 0898.76001
[5] Courty, F.; Dervieux, A.; Koobus, B.; Hascoet, L., Reverse automatic differentiation for optimum design: from adjoint state assembly to gradient computation, Journal of Optimization Methods and Software, 18, 5, 615-627 (2003) · Zbl 1142.90524
[6] Désidéri, J.-A., Hierarchical optimum-shape algorithms using embedded Bézier parameterizations, (Kuznetsov, Y.; etal., Numerical Methods for Scientific Computing. Numerical Methods for Scientific Computing, Variational Problems and Applications (2003), CIMNE: CIMNE Barcelona)
[7] J.-A. Désidéri, A. Janka, Multilevel shape parameterization for aerodynamic optimization – application to drag and noise reduction of transonic/supersonic business jet, in: E. Heikkola et al., (Ed.), European Congress on Computational Methods in Applied Sciences and Engineering (ECCOMAS 2004), Jyväskyla, 24-28 July 2004.; J.-A. Désidéri, A. Janka, Multilevel shape parameterization for aerodynamic optimization – application to drag and noise reduction of transonic/supersonic business jet, in: E. Heikkola et al., (Ed.), European Congress on Computational Methods in Applied Sciences and Engineering (ECCOMAS 2004), Jyväskyla, 24-28 July 2004.
[8] Désidéri, J.-A.; Zolésio, J.-P., Inverse shape optimization problems and application to airfoils, Control and Cybernetics, 34, 1 (2005) · Zbl 1167.49321
[9] J.-A. Désidéri, Two-level ideal algorithm for parametric shape optimization, in: W. Fitzgibbon, R. Hoppe, J. Périaux, O. Pironneau, Y. Vassilevski (Eds.), Advances in Numerical Mathematics, Proceedings of International Conferences, Moscow, Institute of Numerical Mathematics, Russian Academy of Sciences, September 16-17, 2005 and Houston, Department of Mathematics, University of Houston, 2006, pp. 65-85, in press.; J.-A. Désidéri, Two-level ideal algorithm for parametric shape optimization, in: W. Fitzgibbon, R. Hoppe, J. Périaux, O. Pironneau, Y. Vassilevski (Eds.), Advances in Numerical Mathematics, Proceedings of International Conferences, Moscow, Institute of Numerical Mathematics, Russian Academy of Sciences, September 16-17, 2005 and Houston, Department of Mathematics, University of Houston, 2006, pp. 65-85, in press.
[10] J.-A. Désidéri and A. Dervieux, Hierarchical Methods for Shape Optimization in Aerodynamics - I: multilevel algorithms for parametric shape optimization, in: J. Périaux and H. Deconinck, (Eds.), Introduction to Optimization and Multidisciplinary Design, Lecture Series 2006-3, Von Karman Institute for Fluid Dynamics Publish., 2006.; J.-A. Désidéri and A. Dervieux, Hierarchical Methods for Shape Optimization in Aerodynamics - I: multilevel algorithms for parametric shape optimization, in: J. Périaux and H. Deconinck, (Eds.), Introduction to Optimization and Multidisciplinary Design, Lecture Series 2006-3, Von Karman Institute for Fluid Dynamics Publish., 2006.
[11] R. Duvigneau, Adaptive Parameterization using Free-Form Deformation for Aerodynamic Shape Optimization, INRIA Research Report No. 5949, 2006. <http://hal.inria.fr/inria-00085058>; R. Duvigneau, Adaptive Parameterization using Free-Form Deformation for Aerodynamic Shape Optimization, INRIA Research Report No. 5949, 2006. <http://hal.inria.fr/inria-00085058>
[12] M.-B. Giles, Adjoint methods for aeronautical design, in: Proc. ECCOMAS CFD Conference, Swansea, UK, 2001.; M.-B. Giles, Adjoint methods for aeronautical design, in: Proc. ECCOMAS CFD Conference, Swansea, UK, 2001.
[13] L. Hascoet, M. Vazquez, A. Dervieux, Automatic differentiation for optimum design, applied to sonic boom reduction, in: V. Kumar, et al., (Ed.), Proceedings of the International Conference on Computational Science and its Applications, ICCSA’03, Montreal, Canada, LNCS 2668, Springer Publish., 2003, pp. 85-94.; L. Hascoet, M. Vazquez, A. Dervieux, Automatic differentiation for optimum design, applied to sonic boom reduction, in: V. Kumar, et al., (Ed.), Proceedings of the International Conference on Computational Science and its Applications, ICCSA’03, Montreal, Canada, LNCS 2668, Springer Publish., 2003, pp. 85-94.
[14] Jameson, A., Aerodynamic design via control theory, Journal of Scientific Computing, 3, 3, 233-260 (1988) · Zbl 0676.76055
[15] J.A. Samareh, Multidisciplinary Aerodynamic-Structural Shape Optimization Using Deformation (MASSOUD), AIAA-2000-4911. (8th AIAA/NASA/USAF/ISS MO Symposium on Multidisciplinary Analysis and Optimization, September 6-8, 2000/Long Beach, CA.).; J.A. Samareh, Multidisciplinary Aerodynamic-Structural Shape Optimization Using Deformation (MASSOUD), AIAA-2000-4911. (8th AIAA/NASA/USAF/ISS MO Symposium on Multidisciplinary Analysis and Optimization, September 6-8, 2000/Long Beach, CA.).
[16] Z.L. Tang, J.-A. Désidéri, Towards Self-Adaptive Parameterization of Bézier Curves for Airfoil Aerodynamic Design, INRIA Research Report No. 4572, 2002. <http://hal.inria.fr/inria-72016>; Z.L. Tang, J.-A. Désidéri, Towards Self-Adaptive Parameterization of Bézier Curves for Airfoil Aerodynamic Design, INRIA Research Report No. 4572, 2002. <http://hal.inria.fr/inria-72016>
[17] TAPENADE Automatic Differentiation Tool. <http://www-sop.inria.fr/tropics/tapenade/>; TAPENADE Automatic Differentiation Tool. <http://www-sop.inria.fr/tropics/tapenade/> · Zbl 1295.65026
[18] J.L. Zhou, A.L. Tits, C.T. Lawrence, User’s Guide for FFSQP Version 3.7: A Fortran Code for Solving Optimization Programs, Possibly Minimax, with General Inequality Constraints and Linear Equality Constraints, Generating Feasible Iterates, Institute for Systems Research, University of Maryland, Technical Report SRC-TR-92-107r5, College Park, MD 20742, 1997. <http://www.aemdesign.com/>; J.L. Zhou, A.L. Tits, C.T. Lawrence, User’s Guide for FFSQP Version 3.7: A Fortran Code for Solving Optimization Programs, Possibly Minimax, with General Inequality Constraints and Linear Equality Constraints, Generating Feasible Iterates, Institute for Systems Research, University of Maryland, Technical Report SRC-TR-92-107r5, College Park, MD 20742, 1997. <http://www.aemdesign.com/>
[19] C. Zillober, Software manual for SCPIP 2.3, Technical Report Nr. TR02-1, Informatik, Universität Bayreuth, 2002. <http://www.uni-bayreuth.de/departments/math/ czillober/abstracts/tr02-1>; C. Zillober, Software manual for SCPIP 2.3, Technical Report Nr. TR02-1, Informatik, Universität Bayreuth, 2002. <http://www.uni-bayreuth.de/departments/math/ czillober/abstracts/tr02-1>
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.