Brodhead, Paul; Cenzer, Douglas Effectively closed sets and enumerations. (English) Zbl 1140.03026 Arch. Math. Logic 46, No. 7-8, 565-582 (2008). MSC: 03D45 03D25 03D30 PDF BibTeX XML Cite \textit{P. Brodhead} and \textit{D. Cenzer}, Arch. Math. Logic 46, No. 7--8, 565--582 (2008; Zbl 1140.03026) Full Text: DOI
Berger, Josef; Bridges, Douglas The anti-Specker property, a Heine-Borel property, and uniform continuity. (English) Zbl 1143.03031 Arch. Math. Logic 46, No. 7-8, 583-592 (2008). Reviewer: Hannes Diener (Christchurch) MSC: 03F65 03F60 03B30 PDF BibTeX XML Cite \textit{J. Berger} and \textit{D. Bridges}, Arch. Math. Logic 46, No. 7--8, 583--592 (2008; Zbl 1143.03031) Full Text: DOI
Cole, Joshua A. Embedding \(\mathrm{FD}(\omega)\) into \({\mathcal{P}_s}\) densely. (English) Zbl 1140.03022 Arch. Math. Logic 46, No. 7-8, 649-664 (2008). MSC: 03D30 06D05 PDF BibTeX XML Cite \textit{J. A. Cole}, Arch. Math. Logic 46, No. 7--8, 649--664 (2008; Zbl 1140.03022) Full Text: DOI arXiv
Franklin, Johanna N. Y. Schnorr trivial reals: a construction. (English) Zbl 1142.03020 Arch. Math. Logic 46, No. 7-8, 665-678 (2008). MSC: 03D15 68Q30 PDF BibTeX XML Cite \textit{J. N. Y. Franklin}, Arch. Math. Logic 46, No. 7--8, 665--678 (2008; Zbl 1142.03020) Full Text: DOI
Barmpalias, George; Brodhead, Paul; Cenzer, Douglas; Remmel, Jeffrey B.; Weber, Rebecca Algorithmic randomness of continuous functions. (English) Zbl 1141.03020 Arch. Math. Logic 46, No. 7-8, 533-546 (2008). MSC: 03D80 03D28 68Q30 PDF BibTeX XML Cite \textit{G. Barmpalias} et al., Arch. Math. Logic 46, No. 7--8, 533--546 (2008; Zbl 1141.03020) Full Text: DOI
Campagnolo, Manuel L.; Ojakian, Kerry The elementary computable functions over the real numbers: applying two new techniques. (English) Zbl 1141.03016 Arch. Math. Logic 46, No. 7-8, 593-627 (2008). MSC: 03D15 03D10 03D20 68Q15 PDF BibTeX XML Cite \textit{M. L. Campagnolo} and \textit{K. Ojakian}, Arch. Math. Logic 46, No. 7--8, 593--627 (2008; Zbl 1141.03016) Full Text: DOI
Cenzer, Douglas; Hinman, Peter G. Degrees of difficulty of generalized r.e. separating classes. (English) Zbl 1151.03020 Arch. Math. Logic 46, No. 7-8, 629-647 (2008). Reviewer: Joseph S. Ullian (Santa Barbara) MSC: 03D30 03D25 PDF BibTeX XML Cite \textit{D. Cenzer} and \textit{P. G. Hinman}, Arch. Math. Logic 46, No. 7--8, 629--647 (2008; Zbl 1151.03020) Full Text: DOI
Brattka, Vasco Borel complexity and computability of the Hahn-Banach theorem. (English) Zbl 1140.03040 Arch. Math. Logic 46, No. 7-8, 547-564 (2008). MSC: 03F60 03D45 03E15 46A22 46S30 PDF BibTeX XML Cite \textit{V. Brattka}, Arch. Math. Logic 46, No. 7--8, 547--564 (2008; Zbl 1140.03040) Full Text: DOI
Kalantari, Iraj; Welch, Larry On degree-preserving homeomorphisms between trees in computable topology. (English) Zbl 1140.03027 Arch. Math. Logic 46, No. 7-8, 679-693 (2008). MSC: 03D45 03D80 03C57 54A20 PDF BibTeX XML Cite \textit{I. Kalantari} and \textit{L. Welch}, Arch. Math. Logic 46, No. 7--8, 679--693 (2008; Zbl 1140.03027) Full Text: DOI
Selected papers of the 3rd international conference on computability and complexity in analysis, CCA 2006, Gainesville, FL, USA, November 1–5, 2006. (English) Zbl 1139.03300 Arch. Math. Logic 46, No. 7-8, 529-694 (2008). MSC: 03-06 68-06 00B25 PDF BibTeX XML Cite Arch. Math. Logic 46, No. 7--8, 529--694 (2008; Zbl 1139.03300)