×

Hierarchical multiresolution approaches for dense point-level breast cancer treatment data. (English) Zbl 1333.62279

Summary: The analysis of point-level (geostatistical) data has historically been plagued by computational difficulties, owing to the high dimension of the nondiagonal spatial covariance matrices that need to be inverted. This problem is greatly compounded in hierarchical Bayesian settings, since these inversions need to take place at every iteration of the associated Markov chain Monte Carlo (MCMC) algorithm. This paper offers an approach for modeling the spatial correlation at two separate scales. This reduces the computational problem to a collection of lower-dimensional inversions that remain feasible within the MCMC framework. The approach yields full posterior inference for the model parameters of interest, as well as the fitted spatial response surface itself. We illustrate the importance and applicability of our methods using a collection of dense point-referenced breast cancer data collected over the mostly rural northern part of the state of Minnesota. Substantively, we wish to discover whether women who live more than a 60-mile drive from the nearest radiation treatment facility tend to opt for mastectomy over breast conserving surgery (BCS, or “lumpectomy”), which is less disfiguring but requires 6 weeks of follow-up radiation therapy. Our hierarchical multiresolution approach resolves this question while still properly accounting for all sources of spatial association in the data.

MSC:

62P10 Applications of statistics to biology and medical sciences; meta analysis
92C50 Medical applications (general)
65C60 Computational problems in statistics (MSC2010)
65C05 Monte Carlo methods

Software:

Boost; BayesDA; spBayes
PDFBibTeX XMLCite
Full Text: DOI Link

References:

[1] Banerjee, S., Finley, A.O., 2007. Bayesian multi-resolution modelling for spatially replicated data sets with application to forest biomass data. J. Statist. Plann. Inference, 137, 3193-3205.; Banerjee, S., Finley, A.O., 2007. Bayesian multi-resolution modelling for spatially replicated data sets with application to forest biomass data. J. Statist. Plann. Inference, 137, 3193-3205. · Zbl 1114.62099
[2] Banerjee, S.; Carlin, B. P.; Gelfand, A. E., Hierarchical Modeling and Analysis for Spatial Data (2004), Chapman and Hall/CRC Press: Chapman and Hall/CRC Press Boca Raton, FL · Zbl 1053.62105
[3] Carlin, B. P.; Louis, T. A., Bayes and Empirical Bayes Methods for Data Analysis (2000), Chapman and Hall/CRC Press: Chapman and Hall/CRC Press Boca Raton, FL · Zbl 1017.62005
[4] Celeux, G.; Forbes, F.; Robert, C. P.; Titterington, D. M., Deviance information criteria for missing data models (with discussion), Bayesian Anal., 1, 651-706 (2006) · Zbl 1331.62329
[5] Chiles, J. P.; Delfiner, P., Geostatistics: Modeling Spatial Uncertainty (1999), Wiley: Wiley New York · Zbl 0922.62098
[6] Cormen, T. H.; Leiserson, C. E.; Rivest, R. L.; Stein, C., Introduction to Algorithms (2001), MIT Press and McGraw-Hill: MIT Press and McGraw-Hill Boston · Zbl 1047.68161
[7] Cressie, N. A.C., Statistics for Spatial Data (1993), Wiley: Wiley New York
[8] Fang, K. T.; Kotz, S.; Ng, K. W., Symmetric Multivariate and Related Distributions (1990), Chapman and Hall: Chapman and Hall London
[9] Finley, A.O., Banerjee, S., McRoberts, R.E., 2007. A Bayesian approach to multi-source forest area estimation. Environ. Ecol. Statist., to appear.; Finley, A.O., Banerjee, S., McRoberts, R.E., 2007. A Bayesian approach to multi-source forest area estimation. Environ. Ecol. Statist., to appear.
[10] Fuentes, M., Periodogram and other spectral methods for nonstationary spatial processes, Biometrika, 89, 197-210 (2002) · Zbl 0997.62073
[11] Fuentes, M., Approximate likelihood for large irregularly spaced spatial data, J. Amer. Statist. Assoc., 102, 321-331 (2007) · Zbl 1284.62589
[12] Gelfand, A. E.; Kottas, A.; Maceachern, S. N., Bayesian nonparametric spatial Dirichlet modeling with Dirichlet process mixing, J. Amer. Statist. Assoc., 100, 1021-1035 (2005) · Zbl 1117.62342
[13] Gelman, A.; Carlin, J. B.; Stern, H. S.; Rubin, D. B., Bayesian Data Analysis (2004), Chapman and Hall/CRC Press: Chapman and Hall/CRC Press Boca Raton, FL · Zbl 1039.62018
[14] Green, P. J., Reversible jump Markov chain Monte Carlo computation and Bayesian model determination, Biometrika, 82, 711-732 (1995) · Zbl 0861.62023
[15] Higdon, D., Space and space time modeling using process convolutions, (Anderson, C.; Barnett, V.; Chatwin, P. C.; El-Shaarawi, A. H., Quantitative Methods for Current Environmental Issues (2002), Springer-Verlag: Springer-Verlag London), 37-56 · Zbl 1255.86016
[16] Kamman, E. E.; Wand, M. P., Geoadditive models, Appl. Statist., 52, 1-18 (2003) · Zbl 1111.62346
[17] Krieger, N.; Chen, J. T.; Waterman, P. D.; Soobader, M. J.; Subramanian, S. V.; Carson, R., Geocoding and monitoring of US socioeconomic inequalities in mortality and cancer incidence: does the choice of area-based measure and geographic level matter?: The Public Health Disparities Geocoding Project, Amer. J. Epidemiol., 156, 471-482 (2002)
[18] Lawson, A. B., Statistical Methods in Spatial Epidemiology (2001), Wiley: Wiley New York · Zbl 1016.62125
[19] Lie-Quan, L.; Lumsdaine, A.; Siek, J. G., Boost Graph Library (2001), Addison-Wesley Professional
[20] Møller, J.; Waagepetersen, R., Statistical Inference and Simulation for Spatial Point Processes (2004), Chapman and Hall/CRC Press: Chapman and Hall/CRC Press Boca Raton, FL · Zbl 1044.62101
[21] Paciorek, C. J., Computational techniques for spatial logistic regression with large data sets, Comput. Statist. Data Anal., 51, 3631-3653 (2007) · Zbl 1161.62437
[22] Palacios, M. B.; Steel, M., Non-Gaussian Bayesian geostatistical modelling, J. Amer. Statist. Assoc., 101, 604-618 (2006) · Zbl 1119.62321
[23] Schabenberger, O.; Gotway, C. A., Statistical Methods for Spatial Data Analysis (2004), Chapman and Hall/CRC Press: Chapman and Hall/CRC Press Boca Raton, FL
[24] Scheiner, S. M.; Gurevitch, J., Design and Analysis of Ecological Experiments (2001), Oxford University Press: Oxford University Press Oxford, UK
[25] Spiegelhalter, D. J.; Best, N. G.; Carlin, B. P.; van der Linde, A., Bayesian measures of model complexity and fit (with discussion), J. Roy. Statist. Soc., Ser. B, 64, 583-639 (2002) · Zbl 1067.62010
[26] Stein, M. L., Interpolation of Spatial Data: Some Theory for Kriging (1999), Springer: Springer New York · Zbl 0924.62100
[27] Ver Hoef, J. M.; Cressie, N. A.C.; Barry, R. P., Flexible spatial models based on the fast Fourier transform (FFT) for cokriging, J. Comput. Graph. Statist., 13, 265-282 (2004)
[28] Waller, L. A.; Gotway, C. A., Applied Spatial Statistics for Public Health Data (2004), Wiley: Wiley New York · Zbl 1057.62106
[29] Webster, R.; Oliver, M. A., Geostatistics for Environmental Scientists (2001), Wiley: Wiley New York · Zbl 0963.62108
[30] Whittle, P., On stationary processes in the plane, Biometrika, 41, 434-449 (1954) · Zbl 0058.35601
[31] Wikle, C., Spatial modeling of count data: a case study in modelling breeding bird survey data on large spatial domains, (Lawson, A.; Denison, D., Spatial Cluster Modelling (2002), CRC/Chapman and Hall: CRC/Chapman and Hall Berlin), 199-209
[32] Zhao, Y.; Staudenmayer, J.; Coull, B. A.; Wand, M. P., General design Bayesian generalized linear mixed models, Statist. Sci., 21, 35-51 (2006) · Zbl 1129.62063
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.