×

Sensitivity of optimal shapes of artificial grafts with respect to flow parameters. (English) Zbl 1227.76018

Summary: The difficulties arising in the numerical solution of PDE-constrained shape optimization problems are manifold. Key ingredients are the optimization strategy and the shape deformation method. Furthermore, the robustness of the optimal shape with respect to simulation parameters is of great interest. In this paper, we consider fluid flows described by the incompressible Navier-Stokes equations. Previous studies on artificial bypass grafts indicated the need for specific constitutive models to account for the non-Newtonian nature of blood; in particular, the constitutive model was shown to affect the solution of the shape optimization problem. We employ a shape optimization framework that couples a finite element solver with quasi-Newton-type optimizers and a Bezier spline shape parametrization. To compute derivatives of the optimal shapes with respect to viscosity, we transform the entire optimization framework by combining the automatic differentiation tools Adifor2 and TAPENADE. We demonstrate the impact of the geometry parametrization and of geometric constraints on the optimization outcome. Finally, we employ the transformed framework to compute the sensitivity of the optimal shape of bypass grafts with respect to kinematic viscosity. The resulting sensitivities predict very accurately the influence of viscosity changes on the optimal shape. The proposed methodology provides a powerful tool to further investigate the necessity of intricate constitutive models by taking derivatives with respect to model parameters.

MSC:

76D55 Flow control and optimization for incompressible viscous fluids
76D05 Navier-Stokes equations for incompressible viscous fluids

Software:

ADIFOR; revolve; DFO; TAPENADE
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Arora, J. S.; Wang, Q., Review of formulations for structural and mechanical system optimization, Struct. Multidisciplin. Optim., 30, 4, 251-272 (2005) · Zbl 1243.74002
[2] Conn, A. R.; Scheinberg, K.; Toint, P., Recent progress in unconstrained nonlinear optimization without derivatives, Math. Program., 79, 397-414 (1997) · Zbl 0887.90154
[3] Conn, A. R.; Gould, N. I.M.; Toint, P. L., Trust-Region Methods (2000), SIAM: SIAM Philadelphia · Zbl 0958.65071
[4] Torczon, V., On the convergence of pattern search algorithms, SIAM J. Optim., 7, 1-25 (1997) · Zbl 0884.65053
[5] Jones, D. R., A taxonomy of global optimization methods based on response surfaces, J. Global Optim., 21, 345-383 (2001) · Zbl 1172.90492
[6] Booker, A. J.; Dennis, J. J.E.; Frank, P. D.; Serafini, D. B.; Torczon, V.; Trosset, M. W., A rigorous framework for optimization of expensive functions by surrogates, Struct. Optim., 17, 1-13 (1999)
[7] Kolda, T. G.; Lewis, R. M.; Torczon, V., Optimization by direct search: new perspectives on some classical and modern methods, SIAM Rev., 45, 3, 385-482 (2003) · Zbl 1059.90146
[8] J.E. Dennis, R.B. Schnabel, Numerical methods for unconstrained optimization and nonlinear equations, Reprinted by SIAM Publications (1993), Prentice-Hall, Englewood Cliffs, NJ, 1983.; J.E. Dennis, R.B. Schnabel, Numerical methods for unconstrained optimization and nonlinear equations, Reprinted by SIAM Publications (1993), Prentice-Hall, Englewood Cliffs, NJ, 1983. · Zbl 0579.65058
[9] Jameson, A., Aerodynamic design via control theory, J. Sci. Comput., 3, 3, 233-260 (1988) · Zbl 0676.76055
[10] Giles, M. B.; Pierce, N. A., An introduction to the adjoint approach to design, Flow Turbulence Combust., 65, 393-415 (2000) · Zbl 0996.76023
[11] Mohammadi, B.; Pironneau, O., Applied Shape Optimization for Fluids (2001), Oxford University Press: Oxford University Press Oxford · Zbl 0970.76003
[12] Nocedal, J.; Wright, S. J., Numerical Optimization (2006), Springer-Verlag · Zbl 1104.65059
[13] Ito, K.; Ravindran, S., Reduced basis method for optimal control of unsteady viscous flows, Int. J. Comput. Fluid Dyn., 15, 2, 97-113 (2001) · Zbl 1036.76011
[14] Burkardt, J.; Gunzburger, M.; Lee, H.-C., POD and CVT-based reduced-order modeling of Navier-Stokes flows, Comput. Meth. Appl. Mech. Engrg., 196, 1-3, 337-355 (2006) · Zbl 1120.76323
[15] Quarteroni, A.; Rozza, G., Numerical solution of parametrized Navier-Stokes equations by reduced basis methods, Numer. Meth. Partial Differ. Equat., 23, 4, 923-948 (2007) · Zbl 1178.76238
[16] Nguyen, N.; Veroy, K.; Patera, A., Handbook of Materials Modeling. Handbook of Materials Modeling, Ch. Certified Real-Time Solutions of Parametrized Partial Differential Equations (2005), Springer: Springer Berlin, pp. 1523-1559
[17] Griewank, A.; Walther, A., Algorithm 799: revolve: an implementation of checkpoint for the reverse or adjoint mode of computational differentiation, ACM Trans. Math. Software, 26, 1, 19 (1999) · Zbl 1137.65330
[18] Fei, D.; Thomas, J. D.; Rittgers, S. E., The effect of angle and flow rate upon hemodynamics in distal vascular graft anastomoses: a numerical model study, ASME J. Biomed. Engrg., 116, 331-336 (1994)
[19] Xiong, F. L.; Chong, C. K., A parametric numerical investigation on hemodynamics in distal coronary anastomoses, Med. Engrg. Phys., 30, 3, 311-320 (2008)
[20] Rozza, G., On optimization, control and shape design of an arterial bypass, Int. J. Numer. Meth. Fluids, 47, 10-11, 1411-1419 (2005) · Zbl 1155.76439
[21] Marsden, A. L.; Feinstein, J. A.; Taylor, C. A., A computational framework for derivative-free optimization of cardiovascular geometries, Comput. Meth. Appl. Mech. Engrg., 197, 21-24, 1890-1905 (2008) · Zbl 1194.76296
[22] Zarins, C.; Giddens, D.; Bharadvaj, B.; Sottiurai, V.; Mabon, R.; Glagov, S., Carotid bifurcation atherosclerosis: quantitative correlation of plaque localization with flow velocity profiles and wall shear stress, Circ. Res., 53, 4, 502-524 (1983)
[23] Wells, D.; Archie, J. P.; Kleinstreuer, C., Effect of carotid artery geometry on the magnitude and distribution of wall shear stress gradients, J. Vascular Surg., 23, 4, 667-678 (1996)
[24] Taylor, C. A.; Cheng, C. P.; Espinosa, L. A.; Tang, B. T.; Parker, D.; Herfkens, R. J., In vivo quantification of blood flow and wall shear stress in the human abdominal aorta during lower limb exercise, Ann. Biomed. Engrg., 30, 402-408 (2002)
[25] Giersiepen, M.; Wurzinger, L. J.; Opitz, R.; Reul, H., Estimation of shear stress-related blood damage in heart valve prostheses – in vitro comparison of 25 aortic valves, Int. J. Artificial Org., 13, 5, 300-306 (1990)
[26] Sankaran, S., Stochatic optimization using a sparse grid collocation scheme, Probab. Engrg. Mech., 382-396 (2009)
[27] Abraham, F.; Behr, M.; Heinkenschloss, M., Shape optimization in steady blood flow: a numerical study of non-Newtonian effects, Computer Methods in Biomechanics and Biomedical Engineering, 8, 2, 127-137 (2005)
[28] M. Probst, M. Lülfesmann, H.M. Bücker, M. Behr, C.H. Bischof, Sensitivity of shear rate in artificial grafts using automatic differentiation, Int. J. Numer. Meth. Fluids (2009), in press, doi:10.1002/fld.2051; M. Probst, M. Lülfesmann, H.M. Bücker, M. Behr, C.H. Bischof, Sensitivity of shear rate in artificial grafts using automatic differentiation, Int. J. Numer. Meth. Fluids (2009), in press, doi:10.1002/fld.2051
[29] Haslinger, J.; Mäkinen, R. A.E., Introduction to Shape Optimization: Theory, Approximation, and Computation, Advances in Design and Control (2003), SIAM: SIAM Philadelphia, PA · Zbl 1020.74001
[30] Goubergrits, L.; Affeld, K., Numerical estimation of blood damage in artificial organs, Artificial Organs, 28, 5, 499-507 (2004)
[31] Gu, L.; Smith, W. A., Evaluation of computational models for hemolysis estimation, ASAIO Journal, 51, 202-207 (2005)
[32] Arora, D.; Behr, M.; Pasquali, M., A tensor-based measure for estimating blood damage, Artificial Organs, 28, 1002-1015 (2004)
[33] Garon, A.; Farinas, M.-I., Fast 3D numerical hemolysis approximation, Artificial Organs, 28, 11, 1016-1025 (2004)
[34] Temam, R., Navier-Stokes Equations (1977), North-Holland · Zbl 0335.35077
[35] Hirsch, C., Numerical Computation of Internal and External Flows (1988), John Wiley & Sons: John Wiley & Sons New York
[36] Gresho, P. M.; Sani, R. L., Incompressible Flow and the Finite Element Method (1998), John Wiley & Sons: John Wiley & Sons New York · Zbl 0941.76002
[37] Chien, S.; King, R. G.; Skalak, R.; Usami, S.; Copley, A. L., Viscoelastic properties of human blood and red cell suspensions, Biorheology, 12, 6, 341-346 (1975)
[38] Thurston, G. B., Viscoelasticity of human blood, Biophysical Journal, 12, 1205-1217 (1972)
[39] Berger, S. A.; Jou, L. D., Flows in stenotic vessels, Annual Review of Fluid Mechanics, 32, 347-382 (2000) · Zbl 0989.76096
[40] Johnston, B. M.; Johnston, P. R.; Corney, S.; Kilpatrick, D., Non-Newtonian blood flow in human right coronary arteries: Steady state simulations, Journal of Biomechanics, 37, 709-720 (2004)
[41] Rodkiewicz, C. M.; Sinha, P.; Kennedy, J. S., On the application of a constitutive equation for whole human blood, Journal of Biomedical Engineering, 112, 198-206 (1990)
[42] Perktold, K.; Resch, M.; Florian, H., Pulsatile non-Newtonian flow characteristics in a three-dimensional human carotid bifurcation model, Journal of Biomedical Engineering, 113, 464-475 (1991)
[43] Gijsen, F. J.H.; van de Vosse, F. N.; Janssen, J. D., The influence of the non-Newtonian properties of blood on the flow in large arteries: Steady flow in a carotid bifurcation model, Journal of Biomechanics, 32, 601-608 (1999)
[44] Lukác˘ová-Medvid’ová, M.; Zaus˘ková, A., Numerical modelling of shear-thinning non-Newtonian flows in compliant vessels, Int. J. Numer. Meth. Fluids, 56, 8, 1409-1415 (2008) · Zbl 1151.76020
[45] Leuprecht, A.; Perktold, K., Computer simulation of non-Newtonian effects on blood flow in large arteries, Comput. Meth. Biomech. Biomed. Engrg., 4, 149-163 (2001)
[46] Rall, L. B., Automatic Differentiation: Techniques and Applications. Automatic Differentiation: Techniques and Applications, Lecture Notes in Computer Science (1981), Springer-Verlag: Springer-Verlag Berlin, Vol. 120 · Zbl 0473.68025
[47] A. Griewank, A. Walther, Evaluating Derivatives: Principles and Techniques of Algorithmic Differentiation, second ed., No. 105 in Other Titles in Applied Mathematics, SIAM, Philadelphia, PA, 2008.; A. Griewank, A. Walther, Evaluating Derivatives: Principles and Techniques of Algorithmic Differentiation, second ed., No. 105 in Other Titles in Applied Mathematics, SIAM, Philadelphia, PA, 2008. · Zbl 1159.65026
[48] Griesse, R.; Walther, A., Parametric sensitivities for optimal control problems using automatic differentiation, Optim. Control Appl. Meth., 24, 6, 297-314 (2003) · Zbl 1073.93518
[49] Fiacco, A. V., Introduction to Sensitivity and Stability Analysis, No. 165 in Mathematics in Science and Engineering (1983), Academic Press: Academic Press New York
[50] Piegl, L.; Tiller, W., The NURBS Book. The NURBS Book, Monographs in Visual Communication (1997), Springer-Verlag · Zbl 0828.68118
[51] Johnson, A. A.; Tezduyar, T. E., Mesh update strategies in parallel finite element computations of flow problems with moving boundaries and interfaces, Comput. Meth. Appl. Mech. Engrg., 119, 73-94 (1994) · Zbl 0848.76036
[52] Behr, M.; Tezduyar, T. E., Finite element solution strategies for large-scale flow simulations, Comput. Meth. Appl. Mech. Engrg., 112, 3-24 (1994) · Zbl 0846.76041
[53] Spellucci, P., A new technique for inconsistent QP problems in the SQP method, Math. Meth. Operat. Res., 47, 355-400 (1998) · Zbl 0964.90062
[54] Spellucci, P., An SQP method for general nonlinear programs using only equality constrained subproblems, Math. Program., 82, 413-448 (1998) · Zbl 0930.90082
[55] Bischof, C. H.; Carle, A.; Khademi, P.; Mauer, A., ADIFOR 2.0: automatic differentiation of Fortran 77 programs, IEEE Comput. Sci. Engrg., 3, 3, 18-32 (1996)
[56] L. Hascoët, V. Pascual, Tapenade 2.1 User’s Guide, Technical Report 0300, INRIA, 2004.; L. Hascoët, V. Pascual, Tapenade 2.1 User’s Guide, Technical Report 0300, INRIA, 2004.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.