×

Solution of the Schrödinger equation over an infinite integration interval by perturbation methods, revisited. (English) Zbl 1196.81126

Summary: We consider the solution of the one-dimensional Schrödinger problem over an infinite integration interval. The infinite problem is regularized by truncating the integration interval and imposing the appropriate boundary conditions at the truncation points. The Schrödinger problem is then solved on the truncated integration interval using one of the piecewise perturbation methods developed for the regular Schrödinger problem.We select the truncation points using a procedure based on the WKB approximation. However for problems which behave as a Coulomb problem both around the origin and in the asymptotic range, a more accurate treatment of the numerical boundaries is possible. Taking into account the asymptotic form of the Coulomb equation, adapted boundary conditions can be constructed and as a consequence smaller truncation points can be chosen. To deal with the singularity of the Coulomb-like problem around the origin, a special perturbative algorithm is applied in a small interval around the origin.

MSC:

81Q15 Perturbation theories for operators and differential equations in quantum theory
65L99 Numerical methods for ordinary differential equations

Software:

MATSLISE; SLCPM12; PERSYS
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Ixaru, L. Gr., Numerical Methods for Differential Equations and Applications (1984), Reidel: Reidel Dordrecht · Zbl 0301.34010
[2] Degani, I.; Schiff, J., J. Comput. Appl. Math., 193, 413 (2006)
[3] Ixaru, L. Gr.; De Meyer, H.; Vanden Berghe, G., J. Comput. Appl. Math., 88, 289 (1997)
[4] Ixaru, L. Gr., J. Comput. Appl. Math., 125, 347 (2000)
[5] Ledoux, V.; Van Daele, M.; Vanden Berghe, G., Comput. Phys. Commun., 162, 151 (2004)
[6] Ixaru, L. Gr.; De Meyer, H.; Vanden Berghe, G., Comput. Phys. Commun., 118, 259 (1999)
[7] Ledoux, V.; Van Daele, M.; Vanden Berghe, G., ACM Trans. Math. Softw., 31, 532 (2005)
[8] Ixaru, L. Gr., Phys. Rev. D, 25, 1557 (1982)
[9] Wentzel, G., Z. Physik, 38, 518 (1926)
[10] Kramers, H. A., Z. Physik, 39, 828 (1926)
[11] Brillouin, L., J. Phys. Radium, 7, 353 (1926)
[12] V. Ledoux, M. Rizea, L.Gr. Ixaru, G. Vanden Berghe, M. Van Daele, Comput. Phys. Commun. (2006), in press; V. Ledoux, M. Rizea, L.Gr. Ixaru, G. Vanden Berghe, M. Van Daele, Comput. Phys. Commun. (2006), in press
[13] Abramowitz, M.; Stegun, I. A., Handbook of Mathematical Functions (1972), Dover: Dover New York · Zbl 0515.33001
[14] Brezinski, C.; Redivo Zaglia, M., Extrapolation Methods. Theory and Practice (1991), North-Holland: North-Holland Amsterdam · Zbl 0744.65004
[15] Levin, D., Int. J. Comput. Math., 3, 371 (1973)
[16] Weniger, E. J., Comput. Phys. Rep., 10, 191 (1989)
[17] Vanden Berghe, G.; Fack, V.; De Meyer, H., J. Comput. Appl. Math., 28, 391 (1989)
[18] Rizea, M., Comput. Phys. Commun., 143, 83 (2002)
[19] Ixaru, L. Gr.; De Meyer, H.; Vanden Berghe, G., Phys. Rev. E, 61, 3151 (2000)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.