## Construction of optimal cubature formulas related to computer tomography.(English)Zbl 1231.65054

Summary: We study the problem of the optimization of approximate integration on the class of functions defined on the parallelepiped $$\Pi _{ d }=[0,a _{1}]\times \cdot \cdot \cdot \times [0,a _{ d }], a _{1},\cdots ,a _{ d }$$>0, having a given majorant for the modulus of continuity (relative to the $$l _{1}$$-metric in $$\mathbb R^{ d }$$). An optimal cubature formula, which uses as information integrals of $$f$$ along intersections of $$\Pi _{ d }$$ with $$n$$ arbitrary $$(d - 1)$$-dimensional hyperplanes in $$\mathbb R^{ d } (d>1)$$ is obtained. We also find an asymptotically optimal sequence of cubature formulas, whose information functionals are integrals of $$f$$ along intersections of $$\Pi _{ d }$$ with shifts of $$(d - 2)$$-dimensional coordinate subspaces of $$\mathbb R^{ d } (d>2)$$.

### MSC:

 65D30 Numerical integration 65D32 Numerical quadrature and cubature formulas 41A55 Approximate quadratures 41A63 Multidimensional problems
Full Text:

### References:

  Babenko, V.F.: Asymptotically exact estimate of the remainder of the best cubature formulae for certain classes of functions. Mat. Zametki 19(3), 313–322 (1976) (in Russian); Math Notes 19, 187–193 (1976)  Babenko, V.F.: Exact asymptotic estimates of the remainders of weighted cubature formulas that are optimal for certain classes of functions. Mat. Zametki 20(4), 589–595 (1976) (in Russian)  Babenko, V.F.: On the optimal error bound for cubature formulae on certain classes of continuous functions. Anal. Math. 3, 3–9 (1977) · Zbl 0372.41020  Babenko, V.F.: On a certain problem of optimal integration. In: Studies on Contemporary Problems of Integration and Approximations of Functions and Their Applications. Collection of Research Papers, pp. 3–13. Dnepropetrovsk State University, Dnepropetrovsk (1984) (in Russian)  Babenko, V.F.: Approximations, widths and optimal quadrature formulae for classes of periodic functions with rearrangement invariant sets of derivatives. Anal. Math. 13(4), 281–306 (1987) · Zbl 0652.41008  Babenko, V.F., Borodachov, S.V.: On optimization of cubature formulae for the classes of monotone functions of several variables. Vestn. Dnepr. Univ. Math. 7, 3–7 (2002) (in Russian)  Babenko, V.F., Borodachov, S.V.: On optimization of approximate integration over a d-dimensional ball. East J. Approx. 9(1), 95–109 (2003) · Zbl 1111.41021  Babenko, V.F., Borodachov, S.V.: On the construction of optimal cubature formulae which use integrals over hyperspheres. J. Complex. 23(3), 346–358 (2007) · Zbl 1114.41019  Babenko, V.F., Borodachov, S.V., Skorokhodov, D.S.: Optimal cubature formulae on certain classes of functions defined on a unit cube. Numer. Math. (to appear) · Zbl 1262.41018  Babenko, V.F., Skorokhodov, D.S.: On the best interval quadrature formulae for classes of differentiable periodic functions. J. Complex. 23(4–6), 890–917 (2007) · Zbl 1147.41008  Benedetto, J.J., Zayed, A.I. (eds.): Sampling, Wavelets, and Tomography. Birkhäuser, Basel (2004) · Zbl 1047.94001  Bojanov, B.D.: An extension of the Pizzetti formula for polyharmonic functions. Acta Math. Hung. 91(1–2), 99–113 (2001) · Zbl 0980.31004  Bojanov, B.D.: Cubature formulae for polyharmonic functions, Recent progress in multivariate approximation. In: Internat. Ser. Numer. Math., Witten-Bommerholz, 2000, vol. 137, pp. 49–74. Birkhäuser, Basel (2001) · Zbl 0988.41017  Bojanov, B., Petrova, G.: Uniqueness of the Gaussian quadrature for a ball. J. Approx. Theory 104, 21–44 (2000) · Zbl 0979.41020  Bojanov, B.D., Dimitrov, D.K.: Gaussian extended cubature formulae for polyharmonic functions. Math. Comput. 70(234), 671–683 (2001) · Zbl 0965.31007  Bojanov, B.D.: Optimal quadrature formulas. Usp. Mat. Nauk 60(6(366)), 33–52 (2005) (in Russian); translation in Russ. Math. Surv. 60(6), 1035–1055 (2005)  Bojanov, B., Petrov, P.: Gaussian interval quadrature formulae for Tchebycheff systems. SIAM J. Numer. Anal. 43(2), 787–795 (2005) · Zbl 1088.41016  Bojanov, B.: Interpolation and integration based on averaged values. Approx. Pobab. Banach Cent. Publ. 72, 25–47 (2006) · Zbl 1116.41003  Borodachov, S.V.: On optimization of interval quadrature formulae for certain non-symmetric classes of periodic functions. Vestn. Dnepr. Univ. Math. 4, 19–24 (1999) (in Russian)  Chernaya, E.V.: On the optimization of weighed cubature formulae on certain classes of continuous functions. East J. Approx. 1(1), 47–60 (1995)  Dimitrov, D.K.: Integration of polyharmonic functions. Math. Comput. 65, 1269–1281 (1996) · Zbl 0860.31003  Fejes-Toth, L.: Lagerungen in der Ebene, auf der Kugel und im Raum, 1st edn. Springer, Berlin–Gottingen–Heidelberg (1953) (German); 2nd edn. Springer, Berlin (1972) · Zbl 0052.18401  Gruber, P.M.: Optimum quantization and its applications. Adv. Math. 186, 456–497 (2004) · Zbl 1062.94012  Kantorovich, L.V.: On special methods of numerical integration of even and odd functions. Proc. Steklov Math. Inst. Akad. Nauk. USSR 28, 3–25 (1949) · Zbl 0039.12504  Korneichuk, N.P.: Best cubature formulae for certain classes of functions of several variables. Mat. Zametki 3(5), 565–576 (1968) (in Russian). English transl.: Math. Notes 3, 360–367 (1968)  Ligun, A.A.: Best quadrature formulas for some classes of periodic functions. Mat. Zametki 24(5), 661–669 (1978) (in Russian)  Lusternik, L.A.: Certain cubature formulas for double integrals. Dokl. Akad. Nauk SSSR 62(4), 449–452 (1948)  Motornyi, V.P.: On the best quadrature formula of the form $$$\backslash$$sum_{k=1}\^{n}{p_{k}f(x_{k})}$ for some classes of differentiable periodic functions. Izv. Akad. Nauk SSSR, Ser. Mat. 38(3), 583–614 (1974) (in Russian). English transl.: Math. USSR Izv. 8(3), 591–620 (1974)  Motornyi, V.P.: On the best interval quadrature formula in the class of functions with bounded r-th derivative. East J. Approx. 4(4), 459–478 (1998)  Motornyi, V.P.: Investigations of Dnepropetrovsk mathematicians on the optimization of quadrature formulas. Ukr. Math. J. 42(1), 13–27 (1990) · Zbl 0715.41044  Mysovskih, I.P.: Interpolatory Cubature Formulae, 1st edn. Nauka, Moscow (1981) (Russian)  Natterer, F.: The Mathematics of Computerized Tomography. Teubner/Wiley, Stuttgart/Chichester (1986), x+222 pp. · Zbl 0617.92001  Nikol’skiy, S.M.: Quadrature Formulae, 4th edn. Nauka, Moscow (1988) (in Russian)  Nikol’skiy, S.M.: To the question on estimates of approximation by quadrature formulae. Usp. Mat. Nauk 5(2(36)), 165–177 (1950) (in Russian)  Petrova, G.: Uniqueness of the Gaussian extended cubature for polyharmonic functions. East J. Approx. 9(3), 269–275 (2003) · Zbl 1111.41023  Petrova, G.: Cubature formulae for spheres, simplices and balls. J. Comput. Appl. Math. 162(2), 483–496 (2004) · Zbl 1046.41015  Traub, J.F., Wozniakowski, H.: A General Theory of Optimal Algorithms. Academic Press, San Diego (1980) · Zbl 0441.68046  Žensykbaev, A.A.: The best quadrature formula for some classes of periodic differentiable functions. Izv. Akad. Nauk SSSR Ser. Mat. 41(5), 1110–1124 (1977) (in Russian)  Žensykbaev, A.A.: Monosplines of minimal norm and optimal quadrature formulas. Usp. Mat. Nauk 36(4(220)), 107–159 (1981) (in Russian)  Žensykbaev, A.A.: Problems of Recovery of Operators. Institute of Computer Research, Moscow–Izhevsk (2003), 412 pp. (in Russian) (ISBN: 5-93972-268-7)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.