×

Modeling and numerical analysis of the solid particle erosion in curved ducts. (English) Zbl 1291.74137

Summary: This paper presents a modeling and computational study on particle erosion in curved ducts. It is found that the average erosion rates per impact range from \(4.2\times 10^{-7}\) to \(9.5\times 10^{-3}mm^{3}/g\) under current conditions. For each doubled inlet velocity, the increases of erosion rates per impact are 2-14 times. The erosion rate per impact varies with particle diameter with “\(\surd\)” shape through bends, which is similar to the particle deposition behavior in duct flows. The erosion rate curves per injected particle show the shapes of a 90-degree anticlockwise rotated “S” and a wide open “V,” respectively, for three larger and smaller inlet velocities. The average erosion rates per injected particle are 1.4-18.9 times those rates per impact due to huge amounts of impacting, especially for those depositing particles. It is obvious that the erosion rate distribution per impact is similar to a “fingerprint” with five clear stripes and a lower “cloud” along the bend deflection angle for the three largest particles; yet, for other smaller particles, the erosion rate distributions are much like an entire “cloud.”

MSC:

74L10 Soil and rock mechanics

Software:

FLUENT
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Sippola, M. R.; Nazaroff, W. W., Particle deposition in ventilation ducts: connectors, bends and developing turbulent flow, Aerosol Science and Technology, 39, 2, 139-150 (2005) · doi:10.1080/027868290908759
[2] Jianzhong, L.; Xing, S.; Zhenjiang, Y., Effects of the aspect ratio on the sedimentation of a fiber in Newtonian fluids, Journal of Aerosol Science, 34, 7, 909-921 (2003) · doi:10.1016/S0021-8502(03)00039-9
[3] Yu, M.; Koivisto, A. J.; Hämeri, K.; Seipenbusch, M., Size dependence of the ratio of aerosol coagulation to deposition rates for indoor aerosols, Aerosol Science and Technology, 47, 4, 427-434 (2012)
[4] Sarver, T.; Al-Qaraghuli, A.; Kazmerski, L. L., A comprehensive review of the impact of dust on the use of solar energy: history, investigations, results, literature, and mitigation approaches, Renewable and Sustainable Energy Reviews, 22, 698-733 (2013) · doi:10.1016/j.rser.2012.12.065
[5] Sun, K.; Lu, L., Particle flow behavior of distribution and deposition throughout 90° bends: analysis of influencing factors, Journal of Aerosol Science, 65, 26-41 (2013) · doi:10.1016/j.jaerosci.2013.07.002
[6] Lin, J. Z.; Lin, P. F.; Chen, H. J., Research on the transport and deposition of nanoparticles in a rotating curved pipe, Physics of Fluids, 21, 12 (2009) · Zbl 1183.76315 · doi:10.1063/1.3264110
[7] El-Behery, S. M.; Hamed, M. H.; Ibrahim, K. A.; El-Kadi, M. A., CFD evaluation of solid particles erosion in curved ducts, Journal of Fluids Engineering, 132, 7 (2010) · doi:10.1115/1.4001968
[8] Sun, K.; Lu, L.; Jiang, H., A numerical study of bend-induced particle deposition in and behind duct bends, Building and Environment, 52, 77-87 (2012) · doi:10.1016/j.buildenv.2011.12.009
[9] Chen, X. H.; McLaury, B. S.; Shirazi, S. A., A comprehensive procedure to estimate erosion in elbows for gas/liquid/sand multiphase flow, Journal of Energy Resources Technology, 128, 1, 70-78 (2006) · doi:10.1115/1.2131885
[10] Zhang, Y. L.; McLaury, B. S.; Shirazi, S. A., Improvements of particle near-wall velocity and erosion predictions using a commercial CFD code, Journal of Fluids Engineering, 131, 3 (2009) · doi:10.1115/1.3077139
[11] Macchini, R.; Bradley, M. S. A.; Deng, T., Influence of particle size, density, particle concentration on bend erosive wear in pneumatic conveyors, Wear, 303, 1-2, 21-29 (2013) · doi:10.1016/j.wear.2013.02.014
[12] ANSYS Inc., ANSYS FLUENT 12.0 Users Guide (2010), Lebanon, NH, USA: ANSYS Inc., Lebanon, NH, USA
[13] Lin, J. Z.; Li, J.; Zhang, W. F., The forces exerted on a cylindrical particle in the elongational-shear flows, International Journal of Nonlinear Sciences and Numerical Simulation, 5, 1, 9-16 (2004)
[14] Zhao, B.; Zhang, Y.; Li, X. T.; Yang, X. D.; Huang, D. T., Comparison of indoor aerosol particle concentration and deposition in different ventilated rooms by numerical method, Building and Environment, 39, 1, 1-8 (2004) · doi:10.1016/j.buildenv.2003.08.002
[15] Graham, D. I.; James, P. W., Turbulent dispersion of particles using eddy interaction models, International Journal of Multiphase Flow, 22, 1, 157-175 (1996) · Zbl 1135.76429 · doi:10.1016/0301-9322(95)00061-5
[16] Brach, R. M.; Dunn, P. F., Models of rebound and capture for oblique microparticle impacts, Aerosol Science and Technology, 29, 5, 379-388 (1998) · doi:10.1080/02786829808965577
[17] Menguturk, M.; Sverdrup, E. F., Calculated tolerance of a large electric utility gas turbine to erosion damage by coal gas ash particles, ASTM Special Technical Publications, 664 (1979), Philadelphia, Pa, USA: ASTM, Philadelphia, Pa, USA
[18] Song, X. Q.; Lin, J. Z.; Zhao, J. F.; Shen, T. Y., Research on reducing erosion by adding ribs on the wall in particulate two-phase flows, Wear, 193, 1, 1-7 (1996) · doi:10.1016/0043-1648(96)80017-2
[19] Sun, K.; Lu, L.; Jiang, H.; Jin, H., Experimental study of solid particle deposition in 90° ventilated bends of rectangular cross section with turbulent flow, Aerosol Science and Technology, 47, 2, 115-124 (2013) · doi:10.1080/02786826.2012.731094
[20] Sippola, M. R., Particle deposition in ventilation ducts [Ph.D. thesis] (2002), Berkeley, Calif, USA: University of California, Berkeley, Berkeley, Calif, USA
[21] Lai, A. C. K.; Nazaroff, W. W., Modeling indoor particle deposition from turbulent flow onto smooth surfaces, Journal of Aerosol Science, 31, 4, 463-476 (2000) · doi:10.1016/S0021-8502(99)00536-4
[22] White, F. M., Fluid Mechanics (1986), New York, NY, USA: McGraw-Hill, New York, NY, USA
[23] Breuer, M.; Baytekin, H. T.; Matida, E. A., Prediction of aerosol deposition in 90° bends using LES and an efficient Lagrangian tracking method, Journal of Aerosol Science, 37, 11, 1407-1428 (2006) · doi:10.1016/j.jaerosci.2006.01.013
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.