×

A generalized Peano kernel theorem for distributions of exponential decay. (English) Zbl 1325.46041

Summary: The Peano Kernel Theorem (PKT) is a classical representation theorem in numerical integration. The idea is that if \(T\) is a quadrature rule that exactly integrates polynomials up to degree \(n - 1\) on a bounded interval \([a, b]\), then there exists a kernel \(K\), depending only on \(T\), such that \[ E(f) = T(f) - \int_a^b f(t) d t = \int_a^b K(t) f^{(n)}(t) d t, \] whenever \(f \in C^n([a, b])\). In this work, we generalize the PKT from the class of linear functionals on \(C^n([a, b])\) to the class of Laplace transformable tempered distributions of exponential decay. In particular, it is not necessary that the functionals being approximated have compact support. The generalized result is proven using an approach that provides a formula for computing the kernel \(K\) in the Fourier domain, which can be more computationally tractable and efficient in many cases. We conclude with examples of how the generalized Peano Kernel Theorem can be used for error analysis in signal processing.

MSC:

46F05 Topological linear spaces of test functions, distributions and ultradistributions
41A55 Approximate quadratures
65D30 Numerical integration
PDFBibTeX XMLCite
Full Text: DOI

References:

[2] Blair, J., Filtering error estimates and order of accuracy via the Peano Kernel Theorem, Comput. Stand. Interfaces, 33, 122-127 (2011)
[3] Blair, J.; Machorro, E.; Luttman, A., Estimating the bias of local polynomial approximation methods using the Peano kernel, (Recent Advances in Scientific Computing and Applications. Recent Advances in Scientific Computing and Applications, Contemp. Math., vol. 586 (2013)) · Zbl 1286.94030
[4] Bramble, J.; Hilbert, S., Estimation of linear functionals on Sobolev spaces with application to Fourier transforms and spline interpolation, SIAM J. Numer. Anal., 7, 112-113 (1970) · Zbl 0201.07803
[5] De Marchi, S.; Vianello, M., Peano’s Kernel Theorem for vector-valued functions and some applications, Numer. Funct. Anal. Optim., 17, 57-64 (1996) · Zbl 0868.41021
[6] De Marchi, S.; Vianello, M., Peano’s Kernel Theorem for vector-valued functions: a weak version in normed spaces, Numer. Funct. Anal. Optim., 18, 65-74 (1997) · Zbl 0874.41014
[7] Dierolf, P.; Voigt, J., Convolution and \(S^\prime \)-convolution of distributions, Collect. Math., 29, 3, 185-196 (1978) · Zbl 0393.46034
[8] Doob, J. L., Stochastic Processes (1953), John Wiley and Sons · Zbl 0053.26802
[9] Horváth, J., Topological Vector Spaces and Distributions (2012), Dover Publications Inc.
[10] Peano, G., Resto delle formule di quadratura espresso con un integrale definito, Atti Reale Accad. Lincei, Rend., 22, 562-569 (1913) · JFM 44.0358.02
[11] Peano, G., Residuo in formulas de quadratura, Mathesis, 4, 5-10 (1914) · JFM 45.0451.04
[12] Sard, A., Linear Approximation, Math. Surveys, vol. 9 (1963), Amer. Math. Soc. · Zbl 0115.05403
[13] Schoenberg, I., Cardinal Spline Interpolation (1973), SIAM · Zbl 0264.41003
[14] Schwartz, L., Transformation de Laplace des distributions, Semin. Math. Univ. Lund, tome suppl. dedié à Riesz, 196-206 (1952)
[15] Schwartz, L., Théorie des Distributions (1966), Hermann Éditeurs des Sciences et des Arts
[16] Unser, M.; Aldroubi, A.; Eden, M., B-spline signal processing: Part I theory, IEEE Trans. Signal Process., 41, 821-832 (1993) · Zbl 0825.94086
[17] Waldron, S., Refinements of the Peano kernel theorem, Numer. Funct. Anal. Optim., 20, 1-2, 147-161 (1999) · Zbl 0956.41016
[18] Zemanian, A. H., Distribution Theory and Transform Analysis: An Introduction to Generalized Functions with Applications (1987), Dover Publications Inc. · Zbl 0643.46028
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.