×

The logarithmically averaged Chowla and Elliott conjectures for two-point correlations. (English) Zbl 1383.11116

Author’s abstract: Let \(\lambda\) denote the Liouville function. The Chowla conjecture, in the two-point correlation case, asserts that \[ \sum_{n\leq x} \lambda(a_1n+b_1) \lambda(a_2n+b_2)= o(x) \] as \(x\to \infty\), for any fixed natural numbers \(a_1,a_2\) and nonnegative integer \(b_1,b_2\) with \(a_1b_2-a_2b_1\neq 0\). In this paper we establish the logarithmically averaged version \[ \sum_{x/\omega(x) < n\leq x} \frac{\lambda(a_1n+b_1) \lambda(a_2n+b_2)}{n} = o(\log \omega(x)) \] of the Chowla conjecture as \(\to \infty\), where \(1\leq \omega(x)\leq x\) is an arbitrary function of \(x\) that goes to infinity as \(x\to \infty\), thus breaking the ‘parity barrier’ for this problem. Our main tools are the multiplicativity of the Liouville function at small primes, a recent result of K. Matomäki, M. Radziwiłł and the author [Algebra Number Theory 9, No. 9, 2167–2196 (2015; Zbl 1377.11109)], on the averages of modulated multiplicative functions in short intervals, concentration of measure inequalities, the Hardy-Littlewood circle method combined with a restriction theorem for the primes, and a novel ‘entropy decrement argument’. Most of these ingredients are also available (in principle, at least) for the higher order correlations, with the main missing ingredient being the need to control short sums of multiplicative functions modulated by local nilsequences. Our arguments also extend to more general bounded multiplicative functions than the Liouville function \(\lambda\), leading to a logarithmically averaged version of the Elliott conjecture in the two-point case. In a subsequent paper we will use this version of the Elliott conjecture to affirmatively settle the Erdős discrepancy problem.

MSC:

11N37 Asymptotic results on arithmetic functions
11P55 Applications of the Hardy-Littlewood method

Citations:

Zbl 1377.11109
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] H.El Abdalaoui, J.Kulaga-Przymus, M.Lemańczyk and T.de la Rue, ‘The Chowla and the Sarnak conjectures from ergodic theory point of view’. Preprint, 2014, arXiv:1410.1673. · Zbl 1360.37019
[2] P.Billingsley, Ergodic Theory and Information, (Robert E. Krieger Publishing Co., Huntington, NY, 1978). Reprint of the 1965 original. · Zbl 0141.16702
[3] S.Chowla, The Riemann Hypothesis and Hilbert’s Tenth Problem, (Gordon and Breach, New York, 1965). · Zbl 0136.32702
[4] P. D. T. A.Elliott, ‘On the correlation of multiplicative functions’, Notas Soc. Mat. Chile, Notas de la Sociedad de Matemática de Chile11 (1992), 1-11. · Zbl 0810.11055
[5] P.Erdős, ‘Some unsolved problems’, Michigan Math. J.4 (1957), 299-300. · Zbl 0081.00102
[6] N.Frantzikinatkis, ‘An averaged Chowla and Elliott conjecture along independent polynomials’. Preprint, 2016, arXiv:1606.08420.
[7] N.Frantzikinatkis and B.Host, ‘Higher order Fourier analysis of multiplicative functions and applications’. Preprint, 2014, arXiv:1403.0945.
[8] N.Frantzikinakis and B.Host, ‘Asymptotics for multilinear averages of multiplicative functions’, Math. Proc. Cambridge Philos. Soc.161(1) (2016), 87-101.10.1017/S0305004116000116 · Zbl 1371.11134
[9] N.Frantzikinakis, B.Host and B.Kra, ‘Multiple recurrence and convergence for sequences related to the prime numbers’, J. Reine Angew. Math.611 (2007), 131-144. · Zbl 1126.37005
[10] J.Friedlander and H.Iwaniec, ‘The polynomial X^2 + Y^4 captures its primes’, Ann. of Math. (2)148(3) (1998), 945-1040.10.2307/121034 · Zbl 0926.11068
[11] J.Friedlander and H.Iwaniec, Opera de Cribro, American Mathematical Society Colloquium Publications, 57 (American Mathematical Society, Providence, RI, 2010).10.1090/coll/057 · Zbl 1226.11099
[12] A.Granville and K.Soundararajan, ‘Decay of mean values of multiplicative functions’, Canad. J. Math.55(6) (2003), 1191-1230.10.4153/CJM-2003-047-0 · Zbl 1047.11093
[13] B.Green and T.Tao, ‘Restriction theory of the Selberg sieve, with applications’, J. Théor. Nombres Bordeaux18(1) (2006), 147-182.10.5802/jtnb.538 · Zbl 1135.11049
[14] B.Green and T.Tao, ‘Linear equations in primes’, Ann. of Math. (2)171(3) (2010), 1753-1850.10.4007/annals.2010.171.1753 · Zbl 1242.11071
[15] B.Green, T.Tao and T.Ziegler, ‘An inverse theorem for the Gowers U^s+1[N]-norm’, Ann. of Math. (2)176(2) (2012), 1231-1372.10.4007/annals.2012.176.2.11 · Zbl 1282.11007
[16] G.Harman, J.Pintz and D.Wolke, ‘A note on the Möbius and Liouville functions’, Studia Sci. Math. Hungar.20(1-4) (1985), 295-299. · Zbl 0544.10041
[17] A.Hildebrand, ‘On consecutive values of the Liouville function’, Enseign. Math. (2)32(3-4) (1986), 219-226. · Zbl 0615.10054
[18] W.Hoeffding, ‘Probability inequalities for sums of bounded random variables’, J. Amer. Stat. Assoc.58 (1963), 13-30.10.1080/01621459.1963.10500830 · Zbl 0127.10602 · doi:10.1080/01621459.1963.10500830
[19] H.Iwaniec and E.Kowalski, Analytic Number Theory, American Mathematical Society Colloquium Publications, 53 (American Mathematical Society, Providence, RI, 2004).10.1090/coll/053 · Zbl 1059.11001
[20] O.Klurman, ‘Correlations of multiplicative functions and applications’. Preprint, 2016, arXiv:1603.084533. · Zbl 1434.11202
[21] K.Matomäki and M.Radziwiłł, ‘Multiplicative functions in short intervals’, Ann. of Math. (2)183(3) (2016), 1015-1056.10.4007/annals.2016.183.3.6 · Zbl 1339.11084
[22] K.Matomäki and M.Radziwiłł, ‘A note on the Liouville function in short intervals’. Preprint, 2015, arXiv:1502.02374. · Zbl 1339.11084
[23] K.Matomäki, M.Radziwiłł and T.Tao, ‘An averaged form of Chowla’s conjecture’, Algebra Number Theory9 (2015), 2167-2196.10.2140/ant.2015.9.2167 · Zbl 1377.11109
[24] K.Matomäki, M.Radziwiłł and T.Tao, ‘Sign patterns of the Möbius and Liouville functions’, Forum Math. Sigma4 (2016), e14, 44 pp.10.1017/fms.2016.6 · Zbl 1394.11066
[25] H.Montgomery, Ten lectures on the interface between analytic number theory and harmonic analysis, CBMS Regional Conference Series in Mathematics, 84 (American Mathematical Society, Providence, RI, 1994). Published for the Conference Board of the Mathematical Sciences, Washington, DC. · Zbl 0814.11001
[26] R.Moser and G.Tardos, ‘A constructive proof of the general Lovász local lemma’, J. ACM57(2) (2010), Art. 11, 15 pp. · Zbl 1300.60024
[27] D. H. J.Polymath, ‘The Erdős discrepancy problem’, michaelnielsen.org/polymath1/index.php?title=The_Erd
[28] P.Sarnak, ‘Three lectures on the Möbius function randomness and dynamics’, 2010, publications.ias.edu/sarnak/paper/506. · Zbl 1473.11147
[29] T.Tao, ‘The ergodic and combinatorial approaches to Szemerédi’s theorem’, inAdditive Combinatorics, CRM Proc. Lecture Notes, 43 (American Mathematical Society, Providence, RI, 2007), 145-193. · Zbl 1159.11005
[30] T.Tao, ‘The Erdős discrepancy problem’, Discrete Anal.1 (2016), 29 pp. · Zbl 1353.11087
[31] T.Tao, ‘Equivalence of the logarithmically averaged Chowla and Sarnak conjectures’. Preprint, 2016, arXiv:1605.04628. · Zbl 1426.11111
[32] G.Tenenbaum, Introduction to Analytic and Probabilistic Number Theory, Cambridge Studies in Advanced Mathematics, 46 (Cambridge University Press, Cambridge, 1995). Translated from the second French edition (1995) by C. B. Thomas. · Zbl 0788.11001
[33] T.Wooley and T.Ziegler, ‘Multiple recurrence and convergence along the primes’, Amer. J. Math.134(6) (2012), 1705-1732.10.1353/ajm.2012.0048 · Zbl 1355.11005
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.