×

Sensitivity analysis in constrained set-valued optimization via Studniarski derivatives. (English) Zbl 1369.49019

Significant implications of Studniarski derivative for the set-valued maps to multiobjective optimization and sensitivity analysis are developed in suggested connections with the dual coderivatives.

MSC:

49J53 Set-valued and variational analysis
49J52 Nonsmooth analysis
54C60 Set-valued maps in general topology
90C31 Sensitivity, stability, parametric optimization
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Anh, N.L.H.: Higher-order optimaltity conditions in set-valued optimization using Studniarski derivatives and applications to duality. Positivity 18, 449-473 (2014) · Zbl 1298.49023 · doi:10.1007/s11117-013-0254-4
[2] Anh, N.L.H., Khanh, P.Q., Tung, L.T.: Higher-order radial derivatives and optimality conditions in nonsmooth vector optimization. Nonlinear Anal. TMA 74, 7365-7379 (2011) · Zbl 1251.90386 · doi:10.1016/j.na.2011.07.055
[3] Anh, N.L.H., Khanh, P.Q.: Higher-order optimality conditions in set-valued optimization using radial sets and radial derivatives. J. Global Optim. 56, 519-536 (2013) · Zbl 1300.90063 · doi:10.1007/s10898-012-9861-z
[4] Anh, N.L.H., Khanh, P.Q.: Higher-order optimality conditions for proper efficiency in nonsmooth vector optimization using radial sets and radial derivatives. J. Global Optim. 58, 693-709 (2014) · Zbl 1326.90075 · doi:10.1007/s10898-013-0077-7
[5] Anh, N.L.H., Khanh, P.Q.: Calculus and applications of Studniarski’s derivatives to sensitivity and implicit function theorems. Control Cybern. 43, 33-57 (2014) · Zbl 1318.49028
[6] Anh, N.L.H., Khanh, P.Q., Tung, L.T.: Variational sets: calculus and applications to nonsmooth vector optimization. Nonlinear Anal. 74, 2358-2379 (2011) · Zbl 1211.49024 · doi:10.1016/j.na.2011.07.055
[7] Aubin, J.-P., Frankowska, H.: Set-Valued Analysis. Birkhauser, Boston (1990) · Zbl 0713.49021
[8] Cominetti, R.: Metric regularity, tangent sets, and second-order optimality conditions. Appl. Math. Optim. 21, 265-287 (1990) · Zbl 0692.49018 · doi:10.1007/BF01445166
[9] Diem, H.T.H., Khanh, P.Q., Tung, L.T.: On higher-order sensitivity analysis in nonsmooth vector optimization. J. Optim. Theory Appl. 162, 463-488 (2014) · Zbl 1323.90061 · doi:10.1007/s10957-013-0424-3
[10] Durea, M., Strugariu, R.: Calculus of tangent sets and derivatives of set-valued maps under metric subregularity conditions. J. Glob. Optim. 56, 587-603 (2013) · Zbl 1291.90240 · doi:10.1007/s10898-011-9800-4
[11] Fiacco, A.V.: Introduction to sensitivity and stability analysis in nonlinear programming. Academic Press, New York (1983) · Zbl 0543.90075
[12] Gfrerer, H.: On directional metric regularity, subregularity and optimality conditions for nonsmooth mathematical programs. Set-Valued Var. Anal. 21, 151-176 (2013) · Zbl 1321.49031 · doi:10.1007/s11228-012-0220-5
[13] Gfrerer, H.: On directional metric subregularity and second-order optimality conditions for a class of nonsmooth mathematical programs. SIAM J. Optim. 23, 632-665 (2013) · Zbl 1275.49027 · doi:10.1137/120891216
[14] Giannessi, F.: Vector Variational Inequalities and Vector Equilibria: Mathematical Theories. Kluwer Academic, Dordrecht (2000) · Zbl 0952.00009 · doi:10.1007/978-1-4613-0299-5
[15] Jahn, J., Khan, A.A.: Some calculus rules for contingent epiderivatives. Optimization 52, 113-125 (2003) · Zbl 1032.49021 · doi:10.1080/0233193031000079865
[16] Khan, A.A., Tammer, C., Zǎlinescu, C.: Set-Valued Optimization: An Introdution with Applications. Springer, Berlin (2015) · Zbl 1308.49004 · doi:10.1007/978-3-642-54265-7
[17] Khanh, P.Q., Tuan, N.D.: Variational sets of multivalued mappings and a unified study of optimality conditions. J. Optim. Theory Appl. 139, 45-67 (2008) · Zbl 1170.49023
[18] Kuk, H., Tanino, T., Tanaka, M.: Sensitivity analysis in vector optimization. J. Optim. Theory Appl. 89, 713-730 (1996) · Zbl 0851.90104 · doi:10.1007/BF02275356
[19] Li, S.J., Chen, C.R.: Higher-order optimality conditions for Henig efficient solutions in set-valued optimization. J. Math. Anal. Appl. 323, 1184-1200 (2006) · Zbl 1144.90481 · doi:10.1016/j.jmaa.2005.11.035
[20] Mordukhovich, B.S.: Variational Analysis and Generalized Differentiation, vol.I: Basic Theory. Springer, Berlin (2006) · Zbl 1323.90061
[21] Mordukhovich, B.S.: Variational Analysis and Generalized Differentiation, vol.II: Applications. Springer, Berlin (2006) · Zbl 0692.49018
[22] Mordukhovich, B.S.: Multiobjective optimization with equilibrium constraints. Math. Program. 117, 331-354 (2009) · Zbl 1165.90020 · doi:10.1007/s10107-007-0172-y
[23] Penot, J.P.: Differentiability of relations and differential stability of perturbed optimization problems. SIAM J. Control Optim. 22, 529-551 (1984) · Zbl 0552.58006 · doi:10.1137/0322033
[24] Rockafellar, R.T.: Proto-differentiability of set-valued mapping and its applications in optimization. Ann. Inst. H. Poincaré 6, 449-482 (1989) · Zbl 0674.90082
[25] Rockafellar, R.T., Wets, R.J.B.: Variational Analysis, 3rdedn. Springer, Berlin (2009)
[26] Shi, D.S.: Sensitivity analysis in convex vector optimization. J. Optim. Theory Appl. 77, 145-159 (1993) · Zbl 0796.90050 · doi:10.1007/BF00940783
[27] Studniarski, M.: Necessary and sufficient conditions for isolated local minima of nonsmooth functions. SIAM J. Control Optim. 25, 1044-1049 (1986) · Zbl 0604.49017 · doi:10.1137/0324061
[28] Sun, X.K., Li, S.J.: Lower Studniarski derivative of the perturbation map in parametrized vector optimization. Optim. Lett. 5, 601-614 (2011) · Zbl 1254.90220 · doi:10.1007/s11590-010-0223-9
[29] Sun, X.K., Li, S.J.: Weak lower Studniarski derivative in set-valued optimization. Pacific J. Optim. 8, 307-320 (2012) · Zbl 1248.46048
[30] Tanino, T.: Sensitivity analysis in multiobjective optimization. J. Optim. Theory Appl. 56, 479-499 (1988) · Zbl 0619.90073 · doi:10.1007/BF00939554
[31] Tanino, T.: Stability and sensitivity analysis in convex vector optimization. SIAM J. Control Optim. 26, 521-536 (1988) · Zbl 0654.49011 · doi:10.1137/0326031
[32] Wang, Q.L., Li, S.J., Teo, K.L.: Higher-order optimality conditions for weakly efficient solutions in nonconvex set-valued optimiaztion. Optim. Lett. 4, 425-437 (2010) · Zbl 1229.90261 · doi:10.1007/s11590-009-0170-5
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.