×

The role of body flexibility in stroke enhancements for finite-length undulatory swimmers in viscoelastic fluids. (English) Zbl 1374.76245

Summary: The role of passive body dynamics on the kinematics of swimming micro-organisms in complex fluids is investigated. Asymptotic analysis of small-amplitude motions of a finite-length undulatory swimmer in a Stokes-Oldroyd-B fluid is used to predict shape changes that result as body elasticity and fluid elasticity are varied. Results from the analysis are compared with numerical simulations and the numerically simulated shape changes agree with the analysis at both small and large amplitudes, even for strongly elastic flows. We compute a stroke-induced swimming speed that accounts for the shape changes, but not additional effects of fluid elasticity. Elasticity-induced shape changes lead to larger-amplitude strokes for sufficiently soft swimmers in a viscoelastic fluid, and these stroke boosts can lead to swimming speed-ups. However, for the strokes we examine, we find that additional effects of fluid elasticity generically result in a slow-down. Our high amplitude strokes in strongly elastic flows lead to a qualitatively different regime in which highly concentrated elastic stresses accumulate near swimmer bodies and dramatic slow-downs are seen.

MSC:

76Z10 Biopropulsion in water and in air
76A10 Viscoelastic fluids
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Balmforth, N. J.; Coombs, D.; Pachmann, S., Microelastohydrodynamics of swimming organisms near solid boundaries in complex fluids, Q. J. Mech. Appl. Maths, 63, 3, 267-294, (2010) · Zbl 1346.76217 · doi:10.1093/qjmam/hbq011
[2] Bird, R. B.; Hassager, O.; Armstrong, R. C.; Curtiss, C. F., Dynamics of Polymeric Liquids, Vol. 2: Kinetic Theory, (1980), John Wiley and Sons
[3] Camalet, S.; Jülicher, F., Generic aspects of axonemal beating, New J. Phys., 2, 1, 24, (2000) · doi:10.1088/1367-2630/2/1/324
[4] Chaudhury, T. K., On swimming in a visco-elastic liquid, J. Fluid Mech., 95, 189-197, (1979) · Zbl 0428.76110 · doi:10.1017/S0022112079001415
[5] Cortez, R., The method of regularized stokeslets, SIAM J. Sci. Comput., 23, 4, 1204-1225, (2001) · Zbl 1064.76080 · doi:10.1137/S106482750038146X
[6] Curtis, M. P.; Gaffney, E. A., Three-sphere swimmer in a nonlinear viscoelastic medium, Phys. Rev. E, 87, 4, (2013)
[7] Dasgupta, M.; Liu, B.; Fu, H. C.; Berhanu, M.; Breuer, K. S.; Powers, T. R.; Kudrolli, A., Speed of a swimming sheet in Newtonian and viscoelastic fluids, Phys. Rev. E, 87, 1, 13015, (2013)
[8] Elfring, G. J. & Lauga, E.2015Theory of locomotion through complex fluids. In Complex Fluids in Biological Systems, pp. 283-317. Springer.
[9] Elfring, G. J.; Goyal, G., The effect of gait on swimming in viscoelastic fluids, J. Non-Newtonian Fluid Mech., 234, 8-14, (2016) · doi:10.1016/j.jnnfm.2016.04.005
[10] Espinosa-Garcia, J.; Lauga, E.; Zenit, R.; Diego, S.; Jolla, L., Fluid elasticity increases the locomotion of flexible swimmers, Phys. Fluids, 25, 3, 31701, (2013) · doi:10.1063/1.4795166
[11] Fauci, L. J.; Peskin, C. S., A computational model of aquatic animal locomotion, J. Comput. Phys., 77, 1, 85-108, (1988) · Zbl 0641.76140 · doi:10.1016/0021-9991(88)90158-1
[12] Fu, H. C.; Powers, T. R.; Wolgemuth, C. W., Theory of swimming filaments in viscoelastic media, Phys. Rev. Lett., 99, 25, (2007) · Zbl 1183.76205
[13] Fu, H. C.; Wolgemuth, C. W.; Powers, T. R., Beating patterns of filaments in viscoelastic fluids, Phys. Rev. E, 78, 4, (2008)
[14] Fu, H. C.; Wolgemuth, C. W.; Powers, T. R., Swimming speeds of filaments in nonlinearly viscoelastic fluids, Phys. Fluids, 21, 3, 33102, (2009) · Zbl 1183.76205 · doi:10.1063/1.3086320
[15] Fulford, G. R.; Katz, D. F.; Powell, R. L., Swimming of spermatozoa in a linear viscoelastic fluid, Biorheology, 35, 4, 295-309, (1998) · doi:10.1016/S0006-355X(99)80012-2
[16] Gagnon, D. A.; Keim, N. C.; Arratia, P. E., Undulatory swimming in shear-thinning fluids: experiments with caenorhabditis elegans, J. Fluid Mech., 758, R3, (2014) · doi:10.1017/jfm.2014.539
[17] Godínez, F. A.; Koens, L.; Montenegro-Johnson, T. D.; Zenit, R.; Lauga, E., Complex fluids affect low-Reynolds number locomotion in a kinematic-dependent manner, Exp. Fluids, 56, 5, 1-10, (2015) · doi:10.1007/s00348-014-1876-4
[18] Goldstein, R. E.; Langer, S. A., Nonlinear dynamics of stiff polymers, Phys. Rev. Lett., 75, 1094-1097, (1995) · doi:10.1103/PhysRevLett.75.1094
[19] Guy, R. D. & Thomases, B.2015Computational challenges for simulating strongly elastic flows in biology. In Complex Fluids in Biological Systems, pp. 359-397. Springer.
[20] Keim, N. C., Garcia, M. & Arratia, P. E.2012Fluid elasticity can enable propulsion at low Reynolds number. Phys. Fluids24 (8), 81703; ISSN 10706631. doi:10.1063/1.4746792
[21] Lauga, E., Floppy swimming: viscous locomotion of actuated elastica, Phys. Fluids, 19, 8, 83104, (2007) · Zbl 1182.76430 · doi:10.1063/1.2751388
[22] Lauga, E., Propulsion in a viscoelastic fluid, Phys. Rev. E, 75, 4, (2007) · Zbl 1182.76430 · doi:10.1103/PhysRevE.75.041916
[23] Li, G.; Ardekani, A. M., Undulatory swimming in non-newtonian fluids, J. Fluid Mech., 784, R4, (2015) · Zbl 1382.76310 · doi:10.1017/jfm.2015.595
[24] Li, G.-J.; Karimi, A.; Ardekani, A. M., Effect of solid boundaries on swimming dynamics of microorganisms in a viscoelastic fluid, Rheol. Acta., 53, 12, 911-926, (2014) · doi:10.1007/s00397-014-0796-9
[25] Liu, B.; Powers, T. R.; Breuer, K. S., Force-free swimming of a model helical flagellum in viscoelastic fluids, Proc. Natl Acad. Sci. USA, 108, 49, 19516-19520, (2011) · doi:10.1073/pnas.1113082108
[26] Montenegro-Johnson, T. D.; Smith, D. J.; Loghin, D., Physics of rheologically enhanced propulsion: different strokes in generalized Stokes, Phys. Fluids, 8, (2013) · Zbl 1320.76128
[27] Qin, B.; Gopinath, A.; Yang, J.; Gollub, J. P.; Arratia, P. E., Flagellar kinematics and swimming of algal cells in viscoelastic fluids, Sci. Rep., 5, 9190, (2015) · doi:10.1038/srep09190
[28] Riley, E. E.; Lauga, E., Enhanced active swimming in viscoelastic fluids, Europhys. Lett., 108, 3, 34003, (2014) · doi:10.1209/0295-5075/108/34003
[29] Riley, E. E.; Lauga, E., Small-amplitude swimmers can self-propel faster in viscoelastic fluids, J. Theor. Biol., 382, 345-355, (2015) · Zbl 1343.92053 · doi:10.1016/j.jtbi.2015.06.045
[30] Salazar, D.; Roma, A. M.; Ceniceros, H. D., Numerical study of an inextensible, finite swimmer in stokesian viscoelastic flow, Phys. Fluids, 28, 6, (2016) · doi:10.1063/1.4953376
[31] Shelley, M. J.; Ueda, T., The stokesian hydrodynamics of flexing, stretching filaments, Physica D, 146, 1, 221-245, (2000) · Zbl 1049.76016 · doi:10.1016/S0167-2789(00)00131-7
[32] Shen, X. N.; Arratia, P. E., Undulatory swimming in viscoelastic fluids, Phys. Rev. Lett., 106, 20, (2011)
[33] Spagnolie, S. E.; Liu, B.; Powers, T. R., Locomotion of helical bodies in viscoelastic fluids: enhanced swimming at large helical amplitudes, Phys. Rev. Lett., 111, 6, (2013) · doi:10.1103/PhysRevLett.111.068101
[34] Sturges, L. D., Motion induced by a waving plate, J. Non-Newtonian Fluid Mech., 8, 3-4, 357-364, (1981) · Zbl 0468.76129 · doi:10.1016/0377-0257(81)80032-8
[35] Sureshkumar, R.; Beris, A. N., Effect of artificial stress diffusivity on the stability of numerical calculations and the flow dynamics of time-dependent viscoelastic flows, J. Non-Newtonian Fluid Mech., 60, 1, 53-80, (1995) · doi:10.1016/0377-0257(95)01377-8
[36] Sznitman, J. & Arratia, P. E.2015Locomotion through complex fluids: an experimental view. In Complex Fluids in Biological Systems, pp. 245-281. Springer.
[37] Teran, J.; Fauci, L.; Shelley, M., Viscoelastic fluid response can increase the speed and efficiency of a free swimmer, Phys. Rev. Lett., 104, 3, (2010) · doi:10.1103/PhysRevLett.104.038101
[38] Thomases, B., An analysis of the effect of stress diffusion on the dynamics of creeping viscoelastic flow, J. Non-Newtonian Fluid Mech., 166, 21-22, 1221-1228, (2011) · Zbl 1282.76057 · doi:10.1016/j.jnnfm.2011.07.009
[39] Thomases, B. & Guy, R. D.2014Mechanisms of elastic enhancement and hindrance for finite-length undulatory swimmers in viscoelastic fluids. Phys. Rev. Lett.113 (9), 098102; ISSN 0031-9007. doi:10.1103/PhysRevLett.113.098102 · Zbl 1374.76245
[40] Wiggins, C. H.; Goldstein, R. E., Flexive and propulsive dynamics of elastica at low Reynolds number, Phys. Rev. Lett., 80, 17, 3879, (1998) · doi:10.1103/PhysRevLett.80.3879
[41] Zhu, L.; Lauga, E.; Brandt, L., Self-propulsion in viscoelastic fluids: pushers vs. pullers, Phys. Fluids, 24, 5, (2012) · doi:10.1063/1.4718446
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.