×

Numerical simulation of metal removal in laser drilling using radial point interpolation method. (English) Zbl 1403.78031

Summary: Prediction of penetration depth in metal laser drilling is done through a simple meshfree numerical model. 2D axisymmetric simplified model of transient metal laser drilling is proposed for continuous laser beam of Gaussian distribution with strong form of Radial Point Interpolation Method (RPIM) used for approximating the temperature field. The commonly used Multi-Quadrics (MQ) and Exponential (EXP) Radial Basis Functions (RBFs) are tested and compared with each other. The model logic is constructed in MATLAB code, while the results are compared with published numerical and experimental work. The simulation results give good agreement with the previous numerical and experimental work, showing the model reliability in predicting the penetration depth in such a physically complex process.

MSC:

78M25 Numerical methods in optics (MSC2010)
65N35 Spectral, collocation and related methods for boundary value problems involving PDEs

Software:

Matlab
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Liu, G. R.; Gu, Y. T., An introduction to meshfree methods and their programming. an introduction to meshfree methods and their programming, (2005), Springer Science+Business Media Berlin/Heidelberg, [ISBN 1-4020-3228-5]
[2] Monaghan, J. J., Smoothed particle hydrodynamics, Rep Prog Phys, 68, 8, 1703-1759, (2005), [ISSN 0034-4885]
[3] Nguyen, Vinh Phu.; Rabczuk, Timon.; Bordas, Stéphane; Duflot, Marc, Meshless methods: a review and computer implementation aspects, Math Comput Simul, 79, 3, 763-813, (2008), [ISSN 03784754] · Zbl 1152.74055
[4] Liu G. Meshfree methods: moving beyond the finite element method. Informa UK Limited; Oct 2009. ISBN 978-1-4200-8210-4. 〈http://dx.doi.org/10.1201/9781420082104〉.
[5] Li Hua, Mulay Shantanu. Meshless methods and their numerical properties. Informa UK Limited; Feb 2013. 〈http://dx.doi.org/10.1201/b14492〉. · Zbl 1266.65001
[6] Wang, J. G.; Liu, G. R., A point interpolation meshless method based on radial basis functions, Int J Numer Methods Eng, 54, 11, 1623-1648, (2002), [ISSN 0029-5981 1097-0207] · Zbl 1098.74741
[7] Chen, Wen; Fu, Zhuo-Jia; Chen, C. S., Recent advances in radial basis function collocation methods, (2014), Springer Berlin Heidelberg, [ISBN 3642395724] · Zbl 1282.65160
[8] Kansa, E. J., Multiquadrics-a scattered data approximation scheme with applications to computational fluid-dynamics-i surface approximations and partial derivative estimates, Comput Math Appl, 19, 8-9, 127-145, (1990), [ISSN 0898-1221] · Zbl 0692.76003
[9] Kansa, E. J., Multiquadrics-a scattered data approximation scheme with applications to computational fluid-dynamics-II solutions to parabolic, hyperbolic and elliptic partial differential equations, Comput Math Appl, 19, 8-9, 147-161, (1990), [ISSN 0898-1221] · Zbl 0850.76048
[10] Liu, G. R.; Zhang, G. Y.; Gu, Y. T.; Wang, Y. Y., A meshfree radial point interpolation method (RPIM) for three-dimensional solids, Comput Mech, 36, 6, 421-430, (2005), [ISSN 0178-7675 1432-0924] · Zbl 1138.74420
[11] Gerace Salvatore, Divo Eduardo, Kassab Alain. A localized radial-basis-function meshless method approach to axisymmetric thermo-elasticity. In: Proceedings of the 9th AIAA/ASME Joint Thermophysics and Heat Transfer Conference. American Institute of Aeronautics and Astronautics (AIAA); Jun 2006. 〈http://dx.doi.org/10.2514/6.2006-3788〉.
[12] Divo, E.; Kassab, A. J., An efficient localized radial basis function meshless method for fluid flow and conjugate heat transfer, J Heat Transf, 129, 2, 124, (2007), [ISSN 00221481]
[13] Dai, Y. J.; Wu, X. H.; Tao, W. Q., Weighted least-squares collocation method (WLSCM) for 2-D and 3-D heat conduction problems in irregular domains, Numer Heat Transf, Part B: Fundam, 59, June (6), 473-494, (2011), [ISSN 1040-7790 1521-0626]
[14] Divo EA, Kassab AJ. A locally-integrated meshless (lim) method applied to advection-diffusion problems. In: International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics. International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics; 2014. URL 〈http://repository.up.ac.za/handle/2263/44530〉.
[15] Mavrič, Boštjan; Šarler, Božidar, Local radial basis function collocation method for linear thermoelasticity in two dimensions, Int J Numer Methods HFF, 25, 6, 1488-1510, (2015), [ISSN 0961-5539] · Zbl 1356.74023
[16] Wang, J. G.; Liu, G. R., On the optimal shape parameters of radial basis functions used for 2-D meshless methods, Comput Methods Appl Mech Eng, 191, 23-24, 2611-2630, (2002), [ISSN 00457825] · Zbl 1065.74074
[17] Huang, C.-S.; Lee, C.-F.; Cheng, A. H.-D., Error estimate, optimal shape factor, and high precision computation of multiquadric collocation method, Eng Anal Bound Elem, 31, 7, 614-623, (2007), [ISSN 0955-7997] · Zbl 1195.65176
[18] Fornberg, Bengt; Piret, Cécile, On choosing a radial basis function and a shape parameter when solving a convective PDE on a sphere, J Comput Phys, 227, 5, 2758-2780, (2008), [ISSN 0021-9991] · Zbl 1135.65039
[19] Cheng, A. H.-D., Multiquadric and its shape parameter-a numerical investigation of error estimate, condition number, and round-off error by arbitrary precision computation, Eng Anal Bound Elem, 36, 2, 220-239, (2012), [ISSN 0955-7997] · Zbl 1245.65162
[20] Steen William M, Mazumder Jyotirmoy. Laser Material Processing, vol. 1. Springer Science+Business Media; 2010. 〈http://dx.doi.org/10.1007/978-1-84996-062-5〉.
[21] Sami Yilbas, Bekir, Laser drilling: practical applications, (2013), Springer Berlin Heidelberg, [ISBN 364234982X] · Zbl 1040.80502
[22] Mishra, Sanjay; Yadava, Vinod, Laser beam micromachining (LBMM)- a review, Opt Lasers Eng, 73, 89-122, (2015), [ISSN 01438166]
[23] JCJ (Kees) Verhoeven. Modelling Laser Percussion Drilling. [Ph.D. thesis], Technische Universiteit Eindhoven; 2004. URL 〈https://doi.org/10.6100/IR580582〉.
[24] Ng, G. K.L.; Crouse, P. L.; Li, L., An analytical model for laser drilling incorporating effects of exothermic reaction, pulse width and hole geometry, Int J Heat Mass Transf, 49, 78, 1358-1374, (2006), [ISSN 00179310] · Zbl 1189.76648
[25] Collins, Jeb; Gremaud, Pierre, A simple model for laser drilling, Math Comput Simul, 81, 8, 1541-1552, (2011), [ISSN 03784754] · Zbl 1219.78112
[26] Muhammad, N.; Rogers, B. D.; Li, L., Understanding the behaviour of pulsed laser dry and wet micromachining processes by multi-phase smoothed particle hydrodynamics (SPH) modelling, J Phys D: Appl Phys, 46, 9, 095101, (2013), [ISSN 0022-3727]
[27] Zhang, Yiming; Shen, Zhonghua, And xiaowu ni. modeling and simulation on long pulse laser drilling processing, Int J Heat Mass Transf, 73, 429-437, (2014), [ISSN 0017-9310 Ah7yv Times Cited:4 Cited References Count:29]
[28] Zhang Tingzhong, Ni Chenyin, Zhou Jie, Zhang Hongchao, Shen Zhonghua, Ni Xiaowu, et al. Numerical simulation of heat transfer and fluid flow in laser drilling of metals. In: Yury M. Andreev, Zunqi Lin, Xiaowu Ni, and Xisheng Ye, editors, In: Proceedings of the Third International Symposium on Laser Interaction with Matter. International Society for Optics and Photonics, SPIE-International Soc Optical Eng; May 2015, pp. 954321-54321. 〈http://dx.doi.org/10.1117/12.2180724〉.
[29] Nukman, Y.; Hassan, M.; Harizam, M., Optimization of prediction error in CO_{2} laser cutting process by Taguchi artificial neural network hybrid with genetic algorithm, Appl Math Inf Sci, 7, 1, 363-370, (2013)
[30] Parandoush, Pedram; Hossain, Altab; Yusoff, Nukman, Numerical and intelligent analysis of silicon nitride laser grooving, Int J Adv Manuf Technol, 79, 9-12, 1849-1859, (2015)
[31] Hossain, Anamul; Hossain, Altab; Nukman, Y.; Hassan, M. A.; Harizam, M. Z.; Sifullah, A. M.; Parandoush, P., A fuzzy logic-based prediction model for kerf width in laser beam machining, Mater Manuf Process, 31, 5, 679-684, (2015)
[32] Gross M. Smooth particle hydrodynamics (sph) modelling of laser cutting. In: International Congress on Applications of Lasers & Electro-Optics. Laser Institute of America; 2008, pp. 637-444. URL 〈http://www.scopus.com/inward/record.url?Eid=2-s2.0-75149163323&partnerID=40&md5=960f756024606d0af3101e617ff8207c〉.
[33] Jung Kim, Meung, Meshfree isoparametric point interpolation method (IPIM) for evaporative laser drilling, Appl Math Model, 35, 6, 2639-2649, (2011), [ISSN 0307-904x] · Zbl 1219.78143
[34] Jung Kim, Meung, Meshfree isoparametric finite point interpolation method (IFPIM) with weak and strong forms for evaporative laser drilling, Appl Math Model, 36, 4, 1615-1625, (2012), [ISSN 0307-904x] · Zbl 1243.78050
[35] Naqavi, I. Z.; Yilbas, B. S., Laser nanosecond pulse heating of surfaces and thermal stresses, Numer Heat Transf, Part A: Appl, 40, 3, 295-316, (2001)
[36] Yilbas, B. S.; Naqvi, I. Z., Laser heating including the phase change process and thermal stress generation in relation to drilling, Proc Inst Mech Eng, Part B: J Eng Manuf, 217, 7, 977-991, (2003)
[37] Wertz, J.; Kansa, E. J.; Ling, L., The role of the multiquadric shape parameters in solving elliptic partial differential equations, Comput Math Appl, 51, 8, 1335-1348, (2006), [ISSN 08981221] · Zbl 1146.65078
[38] Ballestra, Luca Vincenzo; Pacelli, Graziella, Computing the survival probability density function in jump-diffusion models: a new approach based on radial basis functions, Eng Anal Bound Elem, 35, 9, 1075-1084, (2011) · Zbl 1259.65157
[39] Xie, J.; Kar, A.; Rothenflue, J. A.; Latham, W. P., Temperature-dependent absorptivity and cutting capability of CO_{2}, nd:YAG and chemical oxygen-iodine lasers, J Laser Appl, 9, 2, 77-85, (1997), [ISSN 1938-1387]
[40] Bergström David. The absorption of laser light by rough metal surfaces [Ph.D. thesis], Luleå University of Technology; 2008.
[41] Zhang, Yuwen; Faghri, A., Vaporization, melting and heat conduction in the laser drilling process, Int J Heat Mass Transf, 42, 10, 1775-1790, (1999), [ISSN 0017-9310, 169eb Times Cited:54 Cited References Count:16] · Zbl 1054.76581
[42] Ganesh, R. K.; Faghri, A.; Hahn, Y., A generalized thermal modeling for laser drilling process-i. mathematical modeling and numerical methodology, Int J Heat Mass Transf, 40, 14, 3351-3360, (1997), [ISSN 0017-9310] · Zbl 0936.76540
[43] Ganesh, R. K.; Faghri, A.; Hahn, Y., A generalized thermal modeling for laser drilling process-II. numerical simulation and results, Int J Heat Mass Transf, 40, 14, 3361-3373, (1997), [ISSN 0017-9310] · Zbl 0936.76540
[44] Kar, A.; Rockstroh, T.; Mazumder, J., Two-dimensional model for laser-induced materials damage: effects of assist gas and multiple reflections inside the cavity, J Appl Phys, 71, 6, 2560, (1992), [ISSN 0021-8979, Hj655 Times Cited:26 Cited References Count:23]
[45] Bergstrm, D.; Powell, J.; Kaplan, A. F.H., The absorptance of steels to nd:YLF and nd:YAG laser light at room temperature, Appl Surf Sci, 253, 11, 5017-5028, (2007)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.