Treanţă, Savin On a new class of vector variational control problems. (English) Zbl 1417.35216 Numer. Funct. Anal. Optim. 39, No. 14, 1594-1603 (2018). MSC: 35Q93 49J20 26B25 65K10 90C29 90C30 58J32 PDF BibTeX XML Cite \textit{S. Treanţă}, Numer. Funct. Anal. Optim. 39, No. 14, 1594--1603 (2018; Zbl 1417.35216) Full Text: DOI
Shangerganesh, Lingeshwaran; Sowndarrajan, Puthur Thangaraj Optimal control problem for cancer invasion reaction-diffusion system. (English) Zbl 1411.35168 Numer. Funct. Anal. Optim. 39, No. 14, 1574-1593 (2018). MSC: 35K57 49J20 92D99 35K51 35K55 PDF BibTeX XML Cite \textit{L. Shangerganesh} and \textit{P. T. Sowndarrajan}, Numer. Funct. Anal. Optim. 39, No. 14, 1574--1593 (2018; Zbl 1411.35168) Full Text: DOI
Karl, Veronika; Pörner, Frank A joint Tikhonov regularization and augmented Lagrange approach for ill-posed state constrained control problems with sparse controls. (English) Zbl 1414.49034 Numer. Funct. Anal. Optim. 39, No. 14, 1543-1573 (2018). MSC: 49M20 65K10 90C30 49N10 PDF BibTeX XML Cite \textit{V. Karl} and \textit{F. Pörner}, Numer. Funct. Anal. Optim. 39, No. 14, 1543--1573 (2018; Zbl 1414.49034) Full Text: DOI
Carmo, Bruno A.; Clark, H. R.; Guardia, R. R.; Rincon, M. A. Mathematical analysis and numerical simulation of a nonlinear thermoelastic system. (English) Zbl 1411.74026 Numer. Funct. Anal. Optim. 39, No. 14, 1514-1542 (2018). MSC: 74H45 74K15 74S05 35Q74 74F05 PDF BibTeX XML Cite \textit{B. A. Carmo} et al., Numer. Funct. Anal. Optim. 39, No. 14, 1514--1542 (2018; Zbl 1411.74026) Full Text: DOI
Levis, Fabian Eduardo; Rodriguez, Claudia N. The best multipoint Padé approximant. (English) Zbl 1410.41008 Numer. Funct. Anal. Optim. 39, No. 14, 1495-1513 (2018). MSC: 41A21 41A30 PDF BibTeX XML Cite \textit{F. E. Levis} and \textit{C. N. Rodriguez}, Numer. Funct. Anal. Optim. 39, No. 14, 1495--1513 (2018; Zbl 1410.41008) Full Text: DOI
Anh, Tran Viet; Muu, Le Dung; Son, Dang Xuan Parallel algorithms for solving a class of variational inequalities over the common fixed points set of a finite family of demicontractive mappings. (English) Zbl 07048520 Numer. Funct. Anal. Optim. 39, No. 14, 1477-1494 (2018). MSC: 49J40 90C33 PDF BibTeX XML Cite \textit{T. V. Anh} et al., Numer. Funct. Anal. Optim. 39, No. 14, 1477--1494 (2018; Zbl 07048520) Full Text: DOI