×

Sampling of pairs in pairwise likelihood estimation for latent variable models with categorical observed variables. (English) Zbl 1430.62123

Summary: Pairwise likelihood is a limited information estimation method that has also been used for estimating the parameters of latent variable and structural equation models. Pairwise likelihood is a special case of composite likelihood methods that uses lower-order conditional or marginal log-likelihoods instead of the full log-likelihood. The composite likelihood to be maximized is a weighted sum of marginal or conditional log-likelihoods. Weighting has been proposed for increasing efficiency, but the choice of weights is not straightforward in most applications. Furthermore, the importance of leaving out higher-order scores to avoid duplicating lower-order marginal information has been pointed out. In this paper, we approach the problem of weighting from a sampling perspective. More specifically, we propose a sampling method for selecting pairs based on their contribution to the total variance from all pairs. The sampling approach does not aim to increase efficiency but to decrease the estimation time, especially in models with a large number of observed categorical variables. We demonstrate the performance of the proposed methodology using simulated examples and a real application.

MSC:

62H25 Factor analysis and principal components; correspondence analysis
62D05 Sampling theory, sample surveys

Software:

LISREL; lavaan
PDFBibTeX XMLCite
Full Text: DOI Link

References:

[1] Bartholomew, D., Steele, F., Moustaki, I., Galbraith, J.: Analysis of Multivariate Social Science Data, 2nd edn. Chapman and Hall/CRC, Boca Raton (2008) · Zbl 1162.62096
[2] Bellio, R., Varin, C.: A pairwise likelihood approach to generalized linear models with crossed random effects. Stat. Modell. 5, 217-227 (2005) · Zbl 1111.62058 · doi:10.1191/1471082X05st095oa
[3] Besag, J.E.: Spatial interaction and the statistical analysis of lattice systems (with discussion). J. R. Stat. Soc. Ser. B 36, 192-236 (1974) · Zbl 0327.60067
[4] Bolfarine, H., Zacks, S.: Prediction Theory for Finite Population. Springer, New York (1992) · Zbl 0751.62003 · doi:10.1007/978-1-4612-2904-9
[5] Bollen, K.A.: Structural Equations With Latent Variables. Wiley, New York (1989) · Zbl 0731.62159 · doi:10.1002/9781118619179
[6] Chan, W., Bentler, P.: Covariance structure analysis of ordinal ipsative data. Psychometrika 63, 369-399 (1998) · Zbl 1291.62197 · doi:10.1007/BF02294861
[7] Chao, C.-T.: Selection of sampling units under a correlated population based on the eigensystem of the population matrix. Environmetrics 15(8), 757-775 (2004) · doi:10.1002/env.655
[8] Cox, D.R., Reid, N.: A note on pseudolikelihood constructed from marginal densities. Biometrika 91, 729-737 (2004) · Zbl 1162.62365 · doi:10.1093/biomet/91.3.729
[9] de Leon, A.R.: Pairwise likelihood approach to grouped continuous model and its extension. Stat. Probab. Lett. 75, 49-57 (2005) · Zbl 1080.62039 · doi:10.1016/j.spl.2005.05.017
[10] Escoufier, Y.: Le traitement des variables vectorielles. Biometrics 29(4), 751-760 (1973) · doi:10.2307/2529140
[11] Fieuws, S., Verbeke, G.: Pairwise fitting of mixed models for the joint modeling of multivariate longitudinal profiles. Biometrics 62, 424-431 (2006) · Zbl 1097.62058 · doi:10.1111/j.1541-0420.2006.00507.x
[12] Gao, X., Song, P.X.: Composite likelihood Bayesian information criteria for model selection in high dimensional data. J. Am. Stat. Assoc. 105(492), 1531-1540 (2010) · Zbl 1388.62034 · doi:10.1198/jasa.2010.tm09414
[13] Haziza, D., Mecatti, F., Rao, J.: Evaluation of some approximate variance estimators under the Rao-Sampford unequal probability sampling design. Metron Int. J. Stat. LXVI, 91-108 (2008) · Zbl 1151.62015
[14] Heagerty, P., Lele, S.: A composite likelihood approach to binary spatial data. J. Am. Stat. Assoc. 93, 1099-1111 (1998a) · Zbl 1064.62528 · doi:10.1080/01621459.1998.10473771
[15] Heagerty, P.J., Lele, S.: A composite likelihood approach to binary spatial data. J. Am. Stat. Assoc. 93, 1099-1111 (1998b) · Zbl 1064.62528 · doi:10.1080/01621459.1998.10473771
[16] Henderson, R., Shimakura, S.: A serially correlated gamma frailty model for longitudinal count data. Biometrika 90, 355-366 (2003) · Zbl 1034.62115 · doi:10.1093/biomet/90.2.355
[17] Joe, H., Lee, Y.: On weighting of bivariate margins in pairwise likelihood. J. Multivar. Anal. 100, 670-685 (2009) · Zbl 1155.62044 · doi:10.1016/j.jmva.2008.07.004
[18] Jöreskog, K.G.: New developments in LISREL: analysis of ordinal variables using polychoric correlations and weighted least squares. Qual. Quant. 24, 387-404 (1990) · doi:10.1007/BF00152012
[19] Jöreskog, K.G.: On the estimation of polychoric correlations and their asymptotic covariance matrix. Psychometrika 59, 381-389 (1994) · Zbl 0830.62059 · doi:10.1007/BF02296131
[20] Jöreskog, K.G., Moustaki, I.: Factor analysis of ordinal variables: a comparison of three approaches. Multivar. Behav. Res. 36, 347-387 (2001) · doi:10.1207/S15327906347-387
[21] Kaplan, D.: A study of the sampling variability and \(z\)-values of parameter estimates from misspecified structural equation models. Multivar. Behav. Res. 24, 41-57 (1989) · doi:10.1207/s15327906mbr2401_3
[22] Katsikatsou, M.: Composite Likelihood Estimation for Latent Variable Models with Ordinal and Continuous or Ranking Variables. Ph.D. thesis, Uppsala University (2013)
[23] Katsikatsou, M., Moustaki, I.: Pairwise likelihood ratio tests and model selection criteria for structural equation models with ordinal variables. Psychometrika 81, 1046-1068 (2016) · Zbl 1367.62317 · doi:10.1007/s11336-016-9523-z
[24] Katsikatsou, M., Moustaki, I., Yang-Wallentin, F., Jöreskog, K.G.: Pairwise likelihood estimation for factor analysis models with ordinal data. Comput. Stat. Data Anal. 56, 4243-4258 (2012) · Zbl 1255.62172 · doi:10.1016/j.csda.2012.04.010
[25] Lee, S.Y., Poon, W.Y., Bentler, P.M.: Full maximum likelihood analysis of structural equation models with polytomous variables. Stat. Probab. Lett. 9, 91-97 (1990) · Zbl 0687.62043 · doi:10.1016/0167-7152(90)90100-L
[26] Lee, S.Y., Poon, W.Y., Bentler, P.M.: Structural equation models with continuous and polytomous variables. Psychometrika 57, 89-105 (1992) · Zbl 0760.62099 · doi:10.1007/BF02294660
[27] Lindsay, B.; Prabhu, NU (ed.), Composite likelihood methods, 221-239 (1988), Providence · Zbl 0672.62069 · doi:10.1090/conm/080/999014
[28] Lingoes, J., Schönemann, P.: Alternative measures of fit for the Schnemann-Carrol matrix fitting algorithm. Psychometrika 39, 423-427 (1974) · Zbl 0295.92022 · doi:10.1007/BF02291666
[29] Liu, J.: Multivariate ordinal data analysis with pairwise likelihood and its extension to SEM. Ph.D. thesis, University of California (2007)
[30] Mayer, C.-D., Lorent, J., Horgan, G.: Exploratory analysis of multiple omics datasets using the adjusted RV coefficient. Stat. Appl. Genet. Mol. Biol. 10, 14 (2011) · Zbl 1296.92053 · doi:10.2202/1544-6115.1540
[31] Muthén, B.: A general structural model with dichotomous, ordered categorical and continuous latent variable indicators. Psychometrika 49(1), 115-132 (1984) · doi:10.1007/BF02294210
[32] Pace, L., Salvan, A., Sartori, N.: Adjusting composite likelihood ratio statistics. Stat. Sin. 21, 129-148 (2011) · Zbl 1206.62109
[33] Rao, J., Nigam, A.: Optimal controlled sampling designs. Biometrika 77, 807-814 (1990) · Zbl 0709.62017 · doi:10.1093/biomet/77.4.807
[34] Rao, J., Nigam, A.: Optimal controlled sampling: a unified approach. Int. Stat. Rev. 60, 89-98 (1992) · Zbl 0761.62008 · doi:10.2307/1403503
[35] Robert, P., Escoufier, Y.: A unifying tool for linear multivariate statistical methods: the RV-coefficient. J. R. Stat. Soc. Ser. C (Appl. Stat.) 25(3), 257-265 (1976)
[36] Rosseel, Y.: lavaan: an R package for structural equation modeling. J. Stat. Softw. 48(2), 1-36 (2012) · doi:10.18637/jss.v048.i02
[37] Rosseel, Y., Oberski, D., Byrnes, J., Vanbrabant, L., Savalei, V., Merkle, E.: Package lavaan (2012)
[38] Sampford, M.R.: On sampling without replacement with unequal probabilities. Biometrika 54, 499-513 (1967) · doi:10.1093/biomet/54.3-4.499
[39] Sarndal, C.-E.: Design-based and model-based inference in survey sampling. Scand. J. Stat. 5(1), 27-52 (1978) · Zbl 0384.62006
[40] Selnes, F., Sallis, J.: Promoting relationship learning. J. Mark. 67, 80-95 (2003) · doi:10.1509/jmkg.67.3.80.18656
[41] Varin, C.: On composite marginal likelihoods. Adv. Stat. Anal. 92, 1-28 (2008) · Zbl 1171.62315 · doi:10.1007/s10182-008-0060-7
[42] Varin, C., Czado, C.: A mixed autoregressive probit model for ordinal longitudinal data. Biostatistics 11, 127-138 (2010) · Zbl 1437.62640 · doi:10.1093/biostatistics/kxp042
[43] Varin, C., Vidoni, P.: A note on composite likelihood inference and model selection. Biometrika 92, 519-528 (2005) · Zbl 1183.62037 · doi:10.1093/biomet/92.3.519
[44] Varin, C., Vidoni, P.: Pairwise likelihood inference for ordinal categorical time series. Comput. Stat. Data Anal. 51, 2365-2373 (2006) · Zbl 1157.62499 · doi:10.1016/j.csda.2006.09.009
[45] Varin, C., Host, G., Skare, O.: Pairwise likelihood inference in spatial generalized linear mixed models. Comput. Stat. Data Anal. 49, 1173-1191 (2005) · Zbl 1429.62330 · doi:10.1016/j.csda.2004.07.021
[46] Varin, C., Reid, N., Firth, D.: An overview of composite likelihood methods. Stat. Sin. 21, 5-42 (2011) · Zbl 05849508
[47] Vasdekis, V., Cagnone, S., Moustaki, I.: A pairwise likelihood inference in latent variable models for ordinal longitudinal responses. Psychometrika 77, 425-441 (2012) · Zbl 1272.62136 · doi:10.1007/s11336-012-9264-6
[48] Vasdekis, V., Rizopoulos, D., Moustaki, I.: Weighted pairwise likelihood estimation for a general class of random effects models. Biostatistics 15, 677-689 (2014) · doi:10.1093/biostatistics/kxu018
[49] Yang-Wallentin, F., Jöreskog, K.G., Luo, H.: Confirmatory factor analysis of ordinal variables with misspecified models. Struct. Equ. Model. 17, 392-423 (2010) · doi:10.1080/10705511.2010.489003
[50] Zhao, Y., Joe, H.: Composite likelihood estimation in multivariate data analysis. Can. J. Stat. 33, 335-356 (2005) · Zbl 1077.62045 · doi:10.1002/cjs.5540330303
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.