×

Semiclassical solutions for Choquard equations with Berestycki-Lions type conditions. (English) Zbl 1429.35093

Summary: This paper is concerned with existence of multiple semiclassical states for a class of Choquard equation. Under the classic Berestycki-Lions type assumptions assumed on the nonlinearity, we obtain multiplicity of semiclassical solutions for the equation by using a method of penalization argument. We study further the concentration phenomena of such solutions and show that they converge to the least energy solutions of the associated limit problem as the parameter \(\varepsilon\) goes to 0.

MSC:

35J61 Semilinear elliptic equations
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Ackermann, N., On a periodic Schrödinger equation with nonlocal superlinear part, Math. Z., 248, 2, 423-443 (2004) · Zbl 1059.35037
[2] Ambrosio, V., Zero mass case for a fractional Berestycki-Lions-type problem, Adv. Nonlinear Anal., 7, 3, 365-374 (2018) · Zbl 1394.35542
[3] Bahri, A.; Coron, J. M., On a nonlinear elliptic equation involving the critical Sobolev exponent: The effect of the topology of the domain, Comm. Pure Appl. Math., 41, 3 (1988), 253-249 · Zbl 0649.35033
[4] Bartsch, T., Note on category and cup-length, Priv. Commun. (2012)
[5] Bartsch, T.; Weth, T., The effect of the domain’s configuration space on the number of nodal solutions of singularly perturbed elliptic equations, Topol. Methods Nonlinear Anal., 26, 1, 109-133 (2005) · Zbl 1152.35039
[6] Benci, V.; Cerami, G., The effect of the domain topology on the number of positive solutions of nonlinear elliptic problems, Arch. Rational Mech. Anal., 114, 1, 79-93 (1991) · Zbl 0727.35055
[7] Buffoni, B.; Jeanjean, L.; Stuart, C. A., Existence of a nontrivial solution to a strongly indefinite semilinear equation, Proc. Am. Math. Soc., 119, 1, 179-186 (1993) · Zbl 0789.35052
[8] Byeon, J.; Jeanjean, L., Multi-peak standing waves for nonlinear Schrödinger equations with a general nonlinearity, Discrete Contin. Dynam. Syst., 19, 2, 255-269 (2007) · Zbl 1155.35089
[9] Byeon, J.; Jeanjean, L., Standing waves for nonlinear Schrödinger equations with a general nonlinearity, Arch. Ration. Mech. Anal., 185, 2, 185-200 (2007) · Zbl 1132.35078
[10] Byeon, J.; Wang, Z.-Q., Standing waves with a critical frequency for nonlinear Schrödinger equations, Arch. Ration. Mech. Anal., 165, 4, 295-316 (2002) · Zbl 1022.35064
[11] Byeon, J.; Wang, Z.-Q., Standing waves with a critical frequency for nonlinear Schrödinger equations. II, Calc. Var. Partial Differ. Equ., 18, 2, 207-219 (2003) · Zbl 1073.35199
[12] Cingolani, S.; Clapp, M.; Secchi, S., Multiple solutions to a magnetic nonlinear Choquard equation, Z. Angew. Math. Phys., 63, 2, 233-248 (2012) · Zbl 1247.35141
[13] Cingolani, S.; Jeanjean, L.; Tanaka, K., Multiplicity of positive solutions of nonlinear Schrödinger equations concentrating at a potential well, Calc. Var. Partial Differ. Equ., 53, 1-2, 413-439 (2015) · Zbl 1326.35333
[14] Cingolani, S.; Lazzo, M., Multiple semiclassical standing waves for a class of nonlinear Schrödinger equations, Topol. Methods Nonlinear Anal., 10, 1, 1-13 (1997) · Zbl 0903.35018
[15] Clapp, M.; Salazar, D., Positive and sign changing solutions to a nonlinear Choquard equation, J. Math. Anal. Appl., 407, 1, 1-15 (2013) · Zbl 1310.35114
[16] Georgiev, V.; Tarulli, M.; Venkov, G., Existence and uniqueness of ground states for p-Choquard model, Nonlinear Anal., 179, 131-145 (2019) · Zbl 1406.35318
[17] Ghimenti, M.; Schaftingen, J. V., Nodal solutions for the Choquard equation, J. Funct. Anal., 271, 1, 107-135 (2016) · Zbl 1345.35046
[18] Hatcher, A., Algebraic Topology (2002), Cambridge University Press: Cambridge University Press Cambridge · Zbl 1044.55001
[19] Lieb, E. H., Existence and uniqueness of the minimizing solution of Choquard’s nonlinear equation, Stud. Appl. Math., 57, 2, 93-105 (1976) · Zbl 0369.35022
[20] Lieb, E. H.; loss, M., Analysis, Graduate Studies in Mathematics, vol. 14 (1997), American Mathematical Society: American Mathematical Society Providence
[21] Ma, L.; Zhao, L., Classification of positive solitary solutions of the nonlinear Choquard equation, Arch. Ration. Mech. Anal., 195, 2, 455-467 (2010) · Zbl 1185.35260
[22] Mingqi, X.; Radulescu, V. D.; Zhang, B., A critical fractional Choquard-Kirchhoff problem with magnetic field, Commun. Contemp. Math. (2018), DOI: 10.1142/S0219199718500049 · Zbl 1416.49012
[23] Moroz, I. M.; Penrose, R.; Tod, P., Spherically-symmetric solutions of the Schrödinger-Newton equations, Classical Quantum Gravity, 15, 9, 2733-2742 (1998) · Zbl 0936.83037
[24] Moroz, V.; Schaftingen, J. V., Groundstates of nonlinear Choquard equations: Existenc, qualitative properties and decay asymptotics, J. Funct. Anal., 265, 2, 153-184 (2013) · Zbl 1285.35048
[25] Moroz, V.; Schaftingen, J. V., Existence of groundstates for a class of nonlinear Choquard equations, Trans. Amer. Math. Soc., 367, 9, 6557-6579 (2015) · Zbl 1325.35052
[26] Moroz, V.; Schaftingen, J. V., Groundstates of nonlinear Choquard equations: Hardy-Littlewood-Sobolev critical exponent, Commun. Contemp. Math., 17, 5 (2015), 155005,12 · Zbl 1326.35109
[27] Moroz, V.; Schaftingen, J. V., Semi-classical states for the Choquard equation, Calc. Var. Partial Differ. Equ., 52, 1, 199-235 (2015) · Zbl 1309.35029
[28] Papageorgiou, N. S.; Radulescu, V. D.; Repovs, D. D., Nonlinear analysis-theory and methods, (Springer Monographs in Mathematics (2019), Springer: Springer Switzerland) · Zbl 1414.46003
[29] Pekar, S., Untersuchung über die Elektronentheorie der Kristalle (1954), Akademie Verlag: Akademie Verlag Berlin · Zbl 0058.45503
[30] Penrose, R., On gravity’s role in quantum state reduction, Gen. Relativ. Gravitat., 28, 5, 581-600 (1996) · Zbl 0855.53046
[31] Qin, D. D.; Tang, X. H.; Wu, Q. F., Existence and concentration properties of ground state solutions for elliptic systems, Complex Var. Elliptic Equ. (2019), DOI: 10.1080/17476933.2019.1579210 · Zbl 1454.35065
[32] Schaftingen, J. V.; Xia, J. K., Standing waves with a critical friquency for nonlinear Chorquard equations, Nonlinear Anal., 161, 87-107 (2017) · Zbl 1370.35032
[33] Secchi, S., A note on Schrödinger-Newton systems with decaying electric potential, Nonlinear Anal., 72, 9-10, 3842-3856 (2010) · Zbl 1187.35254
[34] Wang, Z.-Q., On the existence of multiple, single-peaked solutions for a semilinear Neumann problem, Arch. Rational Mech. Anal., 120, 4, 375-399 (1992) · Zbl 0784.35035
[35] Wei, J.-C.; Winter, M., Strongly interacting bumps for the Schrödinger-Newton equations, J. Math. Phys., 012905, 22 (2009) · Zbl 1189.81061
[36] Yang, M. B.; Zhang, J. J.; Zhang, Y. M., Multi-peak solutions for nonlinear Choquard equation with a general nonlinearity, Commun. Pure Appl. Anal., 16, 2, 493-512 (2017) · Zbl 1364.35027
[37] Zhang, X.; Xia, J. K., Semi-classical solutions for Schrödinger-Poisson equations with a critical frequency, J. Differential Equations, 265, 5, 2121-2170 (2018) · Zbl 1392.35098
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.