×

Nonperturbative and thermal dynamics of confined fields in dual QCD. (English) Zbl 1440.81068

Summary: In order to study the detailed dynamics and associated nonperturbative features of QCD, a dual version of the color gauge theory based on a topologically viable homogeneous fibre bundle approach has been analysed taking into account its magnetic symmetry structure. In the dynamically broken phase of magnetic symmetry, the associated flux tube structure on a \(S^2\) sphere in the magnetically condensed state of the dual QCD vacuum has been analyzed for the profiles of the color electric field using flux quantization and stability conditions. The color electric field has its intimate association with the vector mode of the magnetically condensed QCD vacuum, and such field configurations have been analyzed to show that the color electric flux gets localized towards the poles for a large sphere case while it gets uniformly distributed for the small sphere case in the infrared sector of QCD. The critical flux tube densities have been computed for various couplings and are shown to be in agreement with that for lead-ion central collisions in the near infrared sector of QCD. The possible annihilation/unification of flux tubes under some typical flux tube density and temperature conditions in the magnetic symmetry broken phase of QCD has also been analyzed and shown to play an important role in the process of QGP formation. The thermal variation of the profiles of the color electic field is further investigated which indicates the survival of flux tubes even in the thermal domain that leads the possibility of the formation of some exotic states like QGP in the intermediate regime during the quark-hadron phase transition.

MSC:

81V05 Strong interaction, including quantum chromodynamics
81T16 Nonperturbative methods of renormalization applied to problems in quantum field theory
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Gross, D.; Wilczek, F., Asymptotically Free Gauge Theories. I, Physics Review, 8, 10, 3633-3652 (1973) · doi:10.1103/physrevd.8.3633
[2] Politzer, H. D., Reliable Perturbative Results for Strong Interactions?, Physical Review Letters, 30, 26, 1346-1349 (1973) · doi:10.1103/physrevlett.30.1346
[3] Stack, J. D.; Wensley, R. J.; Nieman, S. D., String tension from monopoles in SU(2) lattice gauge theory, Physics Review D, 50, 5, 3399-3405 (1994) · doi:10.1103/physrevd.50.3399
[4] Hoki, S.; Kitahara, S.; Kiura, S.; Matsubara, Y.; Miyamura, O.; Ohno, S.; Suzuki, T., Abelian dominance in SU (2) color confinement, Physics Letters B, 272, 3-4, 326-332 (1991) · doi:10.1016/0370-2693(91)91838-m
[5] Suganuma, H.; Sasaki, S.; Toki, H., Color confinement, quark pair creation and dynamical chiral-symmetry breaking in the dual Ginzburg-Landau theory, Nuclear Physics B, 435, 1-2, 207-240 (1995) · doi:10.1016/0550-3213(94)00392-r
[6] Kronfield, A. S.; Schierholz, D.; Wiese, U. J., Topology and dynamics of the confinement mechanism, Nuclear Physics B, 293, 461-478 (1987) · doi:10.1016/0550-3213(87)90080-0
[7] Nambu, Y., Strings, monopoles, and gauge fields, Physics Review D, 10, 12, 4262-4268 (1974) · doi:10.1103/physrevd.10.4262
[8] Hooft, G. ‘t., On the phase transition towards permanent quark confinement, Nuclear Physics B, 138, 1, 1-25 (1978) · doi:10.1016/0550-3213(78)90153-0
[9] Baker, M.; Ball, J. S.; Zachariasen, F., Dual QCD: A review, Physics Reports, 209, 3, 73-127 (1991) · doi:10.1016/0370-1573(91)90123-4
[10] Suzuki, T., A Ginzburg-Landau Type Theory of Quark Confinement, Progress in Theoretical Physics, 80, 6, 929-934 (1988) · doi:10.1143/PTP.80.929
[11] Suganuma, H.; Ichi, H.; Saski, S.; Toki, H.; Toki, H.; Misuno, S. H., Proceedings of the International Workshop on Color Confinement and Hadrons, 80 (1995), Singapore: World Scientific, Singapore
[12] Hooft, G. ‘t., Topology of the gauge condition and new confinement phases in non-abelian gauge theories, Nuclear Physics B, 190, 3, 455-478 (1981) · doi:10.1016/0550-3213(81)90442-9
[13] Kato, S.; Kondo, K.; Murakami, T.; Shibata, A.; Shinohara, A.; Ito, S., Lattice construction of Cho-Faddeev-Niemi decomposition and gauge-invariant monopole, Physics Letters B, 632, 2-3, 326-332 (2006) · doi:10.1016/j.physletb.2005.10.089
[14] Kato, S.; Kondo, K.; Murakami, T.; Shibata, A.; Shinohara, A.; Ito, S., Compact lattice formulation of Cho-Faddeev-Niemi decomposition: String tension from magnetic monopoles, Physics Letters B, 645, 1, 67-74 (2007) · doi:10.1016/j.physletb.2006.11.066
[15] Kato, S.; Kondo, K.; Murakami, T.; Shibata, A.; Shinohara, A.; Ito, S., Compact lattice formulation of Cho-Faddeev-Niemi decomposition: Gluon mass generation and infrared Abelian dominance, Physics Letters B, 653, 1, 101-108 (2007) · doi:10.1016/j.physletb.2007.07.042
[16] Kato, S.; Kondo, K.; Murakami, T.; Shibata, A.; Shinohara, A.; Ito, S., New descriptions of lattice SU (N) Yang-Mills theory towards quark confinement, Physics Letters B, 669, 101 (2008)
[17] Cundy, N.; Cho, Y. M.; Lee, W., String tension from gauge invariant Magnetic Monopoles, Proceedings of The 30th International Symposium on Lattice Field Theory — PoS(Lattice 2012), 212 (2012)
[18] Cundy, N.; Cho, Y. M.; Lee, W.; Leem, J., The static quark potential from the gauge invariant Abelian decomposition, Physics Letters B, 729, 192-198 (2014) · Zbl 1331.81302 · doi:10.1016/j.physletb.2014.01.009
[19] Panndey, H. C.; Chandola, H. C., Non-perturbative aspects of dual QCD vacuum and confinement, Physics Letters B, 476, 1-2, 193-198 (2000) · Zbl 1050.81716 · doi:10.1016/s0370-2693(00)00033-2
[20] Chandola, H. C.; Pandey, H. C., Current Correlators and Dual Description of Long Distance QCD, Modern Physics Letters A, 17, 10, 599-607 (2011) · doi:10.1142/s0217732302006771
[21] Chandola, H. C.; Yadav, D.; Pandey, H. C.; Dehnen, H., Critical Parameters of Phase Transition in Dual QCD, International Journal of Modern Physics A, 20, 13, 2743-2752 (2012) · Zbl 1070.81528 · doi:10.1142/s0217751x05024341
[22] Chandola, H. C.; Yadav, D., Thermo-field dynamics and quark-hadron phase transition in QCD, Nuclear Physics A, 829, 3-4, 151-169 (2009) · doi:10.1016/j.nuclphysa.2009.08.006
[23] Chandola, H. C.; Punetha, G.; Dehnen, H., Dual QCD thermodynamics and quark-gluon plasma, Nuclear Physics A, 945, 226-247 (2016) · doi:10.1016/j.nuclphysa.2015.10.009
[24] Rawat, D. S.; Chandola, H. C.; Pandey, H. C.; Yadav, D., Flux Tubes, Field Configuration and Non-Perturbative Dynamics of QCD, Springer Proceedings in Physics, 203, 625 (2018) · doi:10.1007/978-3-319-73171-1_147
[25] Mohanty, B., QCD Phase Diagram: Phase Transition, Critical Point and Fluctuations, Nuclear Physics A, 830, 1-4, 899c-907c (2009) · doi:10.1016/j.nuclphysa.2009.10.132
[26] Shuryak, E. V., What RHIC experiments and theory tell us about properties of quark-gluon plasma?, Nuclear Physics A, 750, 1, 64-83 (2005) · doi:10.1016/j.nuclphysa.2004.10.022
[27] Shuryak, E. V.; Zahad, I., Rethinking the properties of the quark-gluon plasma atTc<T<4Tc, Physics Review C, 70, 2, article 021901 (2004) · doi:10.1103/physrevc.70.021901
[28] Liao, J.; Shuryak, E. V., Strongly coupled plasma with electric and magnetic charges, Physics Review C, 75, 5, article 054907 (2007) · doi:10.1103/physrevc.75.054907
[29] Sarkar, S.; Satz, H.; Sinha, B., The Physics of the Quark-Gluon Plasma: Introductory Lectures, Lecture Notes Physics 785 (2010), Berlin Heidelberg: Springer, Berlin Heidelberg · Zbl 1181.81005
[30] Patra, B. K.; Agotia, V., Charmonium suppression in the presence of dissipative forces in a strongly-coupled quark-gluon plasma, The European Physical Journal C, 67, 3-4, 465-477 (2010) · doi:10.1140/epjc/s10052-010-1318-2
[31] Heinz, U., Quark-gluon soup — The perfectly liquid phase of QCD, International Journal of Modern Physics A, 30, 2, 1530011 (2015) · doi:10.1142/s0217751x15300112
[32] Abbas, A.; Paria, L., Hybrids as a signature of quark - gluon plasma, Journal of Physics G: Nuclear and Particle Physics, 23, 7, 791-796 (1997) · doi:10.1088/0954-3899/23/7/004
[33] Satz, H., The Transition from Hadron Matter to Quark-Gluon Plasma, Annual Review of Nuclear and Particle Science, 35, 1, 245-270 (1985) · doi:10.1146/annurev.ns.35.120185.001333
[34] Lampert, M. A.; Sevetitsky, E., Flux tube dynamics in the dual superconductor, Physics Review D, 61, 3, article 034011 (2000) · doi:10.1103/physrevd.61.034011
[35] Lizardo, H. C. M.; Mello, E. V. L., Nonextensive thermodynamics applied to superconductivity, Physica A: Statistical Mechanics and its Applications, 305, 1-2, 340-343 (2002) · Zbl 0984.82511 · doi:10.1016/s0378-4371(01)00685-9
[36] Baker, M.; Ball, J. S.; Zachariasen, F., Effective quark-antiquark potential for the constituent quark model, Physics Review D, 51, 4, 1968-1988 (1995) · doi:10.1103/physrevd.51.1968
[37] Cho, Y. M., Restricted gauge theory, Physics Review D, 21, 4, 1080-1088 (1980) · doi:10.1103/physrevd.21.1080
[38] Cho, Y. M., Extended gauge theory and its mass spectrum, Physical Review D, 23, 10, 2415-2426 (1981) · doi:10.1103/physrevd.23.2415
[39] Cho, Y. M.; Cho, F. H.; Yoon, J. H., Dimensional transmutation by monopole condensation in QCD, Physics Review D, 87, 8, article 085025 (2013) · doi:10.1103/physrevd.87.085025
[40] Cho, Y. M.; Pham, X. Y.; Zhang, P.; Xie, J. J.; Zou, L. P., Glueball physics in QCD, Physics Review D, 91, 11, 114020 (2015) · doi:10.1103/physrevd.91.114020
[41] Coleman, S.; Weinberg, E., Radiative Corrections as the Origin of Spontaneous Symmetry Breaking, Physics Review D, 7, 6, 1888-1910 (1973) · doi:10.1103/physrevd.7.1888
[42] Neilsen, H.; Olesen, B., Vortex-line models for dual strings, Nuclear Physics B, 61, 45-61 (1973) · doi:10.1016/0550-3213(73)90350-7
[43] Ichie, H.; Suganuma, H.; Toki, H., Multi-flux-tube system in the dual Ginzburg-Landau theory, Physics Review D, 54, 5, 3382-3388 (1996) · doi:10.1103/physrevd.54.3382
[44] Dolan, L.; Jackiw, R., Symmetry behavior at finite temperature, Physics Review D, 9, 12, 3320-3341 (1974) · doi:10.1103/physrevd.9.3320
[45] Patra, B. K.; Singh, C. P., Temperature and baryon-chemical-potential-dependent bag pressure for a deconfining phase transition, Physics Review D, 54, 5, 3551-3555 (1996) · doi:10.1103/physrevd.54.3551
[46] Leonidov, A.; Redlich, K.; Satz, H.; Suhonen, E.; Weber, G., Entropy and baryon number conservation in the deconfinement phase transition, Physics Review D, 50, 7, 4657-4662 (1994) · doi:10.1103/physrevd.50.4657
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.