×

Dynamics near the subcritical transition of the 3D Couette flow. I: Below threshold case. (English) Zbl 1444.35002

Memoirs of the American Mathematical Society 1294. Providence, RI: American Mathematical Society (AMS) (ISBN 978-1-4704-4217-0/pbk; 978-1-4704-6251-2/ebook). v, 158 p. (2020).
Publisher’s description: We study small disturbances to the periodic, plane Couette flow in the 3D incompressible Navier-Stokes equations at high Reynolds number \(\mathbf{Re}\). We prove that for sufficiently regular initial data of size \(\epsilon \leq c_0\mathbf{Re}^{-1}\) for some universal \(c_0 > 0\), the solution is global, remains within \(O(c_0)\) of the Couette flow in \(L^2\), and returns to the Couette flow as \(t \rightarrow \infty \). For times \(t \gtrsim \mathbf{Re}^{1/3}\), the streamwise dependence is damped by a mixing-enhanced dissipation effect and the solution is rapidly attracted to the class of “2.5 dimensional” streamwise-independent solutions referred to as streaks. Our analysis contains perturbations that experience a transient growth of kinetic energy from \(O(\mathbf{Re}^{-1})\) to \(O(c_0)\) due to the algebraic linear instability known as the lift-up effect. Furthermore, solutions can exhibit a direct cascade of energy to small scales. The behavior is very different from the 2D Couette flow, in which stability is independent of \(\mathbf{Re}\), enstrophy experiences a direct cascade, and inviscid damping is dominant (resulting in a kind of inverse energy cascade). In 3D, inviscid damping will play a role on one component of the velocity, but the primary stability mechanism is the mixing-enhanced dissipation. Central to the proof is a detailed analysis of the interplay between the stabilizing effects of the mixing and enhanced dissipation and the destabilizing effects of the lift-up effect, vortex stretching, and weakly nonlinear instabilities connected to the non-normal nature of the linearization.

MSC:

35-02 Research exposition (monographs, survey articles) pertaining to partial differential equations
35B35 Stability in context of PDEs
76E05 Parallel shear flows in hydrodynamic stability
76E30 Nonlinear effects in hydrodynamic stability
76F06 Transition to turbulence
76F10 Shear flows and turbulence
35B40 Asymptotic behavior of solutions to PDEs
76F25 Turbulent transport, mixing
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Alinhac, S., The null condition for quasilinear wave equations in two space dimensions I, Invent. Math., 145, 3, 597-618 (2001) · Zbl 1112.35341 · doi:10.1007/s002220100165
[2] Baggett, Jeffrey S.; Driscoll, Tobin A.; Trefethen, Lloyd N., A mostly linear model of transition to turbulence, Phys. Fluids, 7, 4, 833-838 (1995) · Zbl 1039.76509 · doi:10.1063/1.868606
[3] Baggett, Jeffrey S.; Trefethen, Lloyd N., Low-dimensional models of subcritical transition to turbulence, Phys. Fluids, 9, 4, 1043-1053 (1997) · Zbl 1185.76574 · doi:10.1063/1.869199
[4] Bahouri, Hajer; Chemin, Jean-Yves; Danchin, Rapha\"{e}l, Fourier analysis and nonlinear partial differential equations, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences] 343, xvi+523 pp. (2011), Springer, Heidelberg · Zbl 1227.35004 · doi:10.1007/978-3-642-16830-7
[5] Bajer, Konrad; Bassom, Andrew P.; Gilbert, Andrew D., Accelerated diffusion in the centre of a vortex, J. Fluid Mech., 437, 395-411 (2001) · Zbl 0981.76023 · doi:10.1017/S0022112001004232
[6] N.J. Balmforth and P.J. Morrison. Normal modes and continuous spectra. Annals of the New York Academy of Sciences, 773(1):80-94, 1995.
[7] N.J. Balmforth, P.J. Morrison, and J.-L. Thiffeault. Pattern formation in Hamiltonian systems with continuous spectra; a normal-form single-wave model. preprint, 2013.
[8] Bassom, Andrew P.; Gilbert, Andrew D., The spiral wind-up of vorticity in an inviscid planar vortex, J. Fluid Mech., 371, 109-140 (1998) · Zbl 0918.76009 · doi:10.1017/S0022112098001955
[9] Beck, Margaret; Wayne, C. Eugene, Metastability and rapid convergence to quasi-stationary bar states for the two-dimensional Navier-Stokes equations, Proc. Roy. Soc. Edinburgh Sect. A, 143, 5, 905-927 (2013) · Zbl 1296.35114 · doi:10.1017/S0308210511001478
[10] J. Bedrossian, P. Germain, and N. Masmoudi. Dynamics near the subcritical transition of the 3D Couette flow II: Above threshold. arXiv:1506.03721, 2015. · Zbl 1444.35002
[11] Bedrossian, Jacob; Germain, Pierre; Masmoudi, Nader, On the stability threshold for the 3D Couette flow in Sobolev regularity, Ann. of Math. (2), 185, 2, 541-608 (2017) · Zbl 1366.35113 · doi:10.4007/annals.2017.185.2.4
[12] Bedrossian, Jacob; Masmoudi, Nader; Mouhot, Cl\'{e}ment, Landau damping: paraproducts and Gevrey regularity, Ann. PDE, 2, 1, Art. 4, 71 pp. (2016) · Zbl 1402.35058 · doi:10.1007/s40818-016-0008-2
[13] Bedrossian, Jacob; Masmoudi, Nader; Vicol, Vlad, Enhanced dissipation and inviscid damping in the inviscid limit of the Navier-Stokes equations near the two dimensional Couette flow, Arch. Ration. Mech. Anal., 219, 3, 1087-1159 (2016) · Zbl 1339.35208 · doi:10.1007/s00205-015-0917-3
[14] Jacob Bedrossian and Nader Masmoudi. Inviscid damping and the asymptotic stability of planar shear flows in the 2D Euler equations. Publications mathematiques de l’IHES, pages 1-106, 2013. · Zbl 1375.35340
[15] A.J. Bernoff and J.F. Lingevitch. Rapid relaxation of an axisymmetric vortex. Phys. Fluids, 6(3717), 1994. · Zbl 0838.76024
[16] Bony, Jean-Michel, Calcul symbolique et propagation des singularit\'{e}s pour les \'{e}quations aux d\'{e}riv\'{e}es partielles non lin\'{e}aires, Ann. Sci. \'{E}cole Norm. Sup. (4), 14, 2, 209-246 (1981) · Zbl 0495.35024
[17] S. Bottin, O. Dauchot, F. Daviaud, and P. Manneville. Experimental evidence of streamwise vortices as finite amplitude solutions in transitional plane Couette flow. Phys. of Fluids, 10:2597, 1998.
[18] Bouchet, Freddy; Morita, Hidetoshi, Large time behavior and asymptotic stability of the 2D Euler and linearized Euler equations, Phys. D, 239, 12, 948-966 (2010) · Zbl 1189.35234 · doi:10.1016/j.physd.2010.01.020
[19] R.J. Briggs, J.D. Daugherty, and R.H. Levy. Role of Landau damping in crossed-field electron beams and inviscid shear flow. Phys. Fl., 13(2), 1970.
[20] Caglioti, E.; Maffei, C., Time asymptotics for solutions of Vlasov-Poisson equation in a circle, J. Statist. Phys., 92, 1-2, 301-323 (1998) · Zbl 0935.35116 · doi:10.1023/A:1023055905124
[21] A.J. Cerfon, J.P. Freidberg, F.I. Parra, and T.A. Antaya. Analytic fluid theory of beam spiraling in high-intensity cyclotrons. Phys. Rev. ST Accel. Beams, 16(024202), 2013.
[22] Chapman, S. Jonathan, Subcritical transition in channel flows, J. Fluid Mech., 451, 35-97 (2002) · Zbl 1037.76023 · doi:10.1017/S0022112001006255
[23] Christodoulou, Demetrios, Global solutions of nonlinear hyperbolic equations for small initial data, Comm. Pure Appl. Math., 39, 2, 267-282 (1986) · Zbl 0612.35090 · doi:10.1002/cpa.3160390205
[24] Constantin, P.; Kiselev, A.; Ryzhik, L.; Zlato\v{s}, A., Diffusion and mixing in fluid flow, Ann. of Math. (2), 168, 2, 643-674 (2008) · Zbl 1180.35084 · doi:10.4007/annals.2008.168.643
[25] Alex DD Craik. Non-linear resonant instability in boundary layers. Journal of Fluid Mechanics, 50(02):393-413, 1971. · Zbl 0227.76071
[26] F Daviaud, J Hegseth, and P Berge. Subcritical transition to turbulence in plane Couette flow. Phys. rev. lett., 69(17):2511, 1992.
[27] Drazin, P. G.; Reid, W. H., Hydrodynamic stability, Cambridge Monographs on Mechanics and Applied Mathematics, xiv+527 pp. (1982), Cambridge University Press, Cambridge-New York · Zbl 0513.76031
[28] B Dubrulle and S Nazarenko. On scaling laws for the transition to turbulence in uniform-shear flows. Euro. Phys. Lett., 27(2):129, 1994.
[29] Y. Duguet, P. Schlatter, and D. S. Henningson. Formation of turbulent patterns near the onset of transition in plane Couette flow. J. of Fluid Mech., 650:119-129, 2010. · Zbl 1189.76254
[30] T Ellingsen and E Palm. Stability of linear flow. Phys. of Fluids, 18:487, 1975. · Zbl 0308.76030
[31] Per A Elofsson, Mitsuyoshi Kawakami, and P Henrik Alfredsson. Experiments on the stability of streamwise streaks in plane Poiseuille flow. Physics of Fluids (1994-present), 11(4):915-930, 1999. · Zbl 1147.76382
[32] Faou, Erwan; Rousset, Fr\'{e}d\'{e}ric, Landau damping in Sobolev spaces for the Vlasov-HMF model, Arch. Ration. Mech. Anal., 219, 2, 887-902 (2016) · Zbl 1333.35291 · doi:10.1007/s00205-015-0911-9
[33] Foias, C.; Temam, R., Gevrey class regularity for the solutions of the Navier-Stokes equations, J. Funct. Anal., 87, 2, 359-369 (1989) · Zbl 0702.35203 · doi:10.1016/0022-1236(89)90015-3
[34] T. Gebhardt and S. Grossmann. Chaos transition despite linear stability. Phys. Rev. E, 50(5):3705, 1994.
[35] Gevrey, Maurice, Sur la nature analytique des solutions des \'{e}quations aux d\'{e}riv\'{e}es partielles. Premier m\'{e}moire, Ann. Sci. \'{E}cole Norm. Sup. (3), 35, 129-190 (1918) · JFM 46.0721.01
[36] Gilbert, Andrew D., Spiral structures and spectra in two-dimensional turbulence, J. Fluid Mech., 193, 475-497 (1988) · Zbl 0643.76067 · doi:10.1017/S0022112088002228
[37] Glassey, Robert; Schaeffer, Jack, Time decay for solutions to the linearized Vlasov equation, Transport Theory Statist. Phys., 23, 4, 411-453 (1994) · Zbl 0819.35114 · doi:10.1080/00411459408203873
[38] Glassey, Robert; Schaeffer, Jack, On time decay rates in Landau damping, Comm. Partial Differential Equations, 20, 3-4, 647-676 (1995) · Zbl 0816.35110 · doi:10.1080/03605309508821107
[39] Grenier, Emmanuel; Guo, Yan; Nguyen, Toan T., Spectral instability of characteristic boundary layer flows, Duke Math. J., 165, 16, 3085-3146 (2016) · Zbl 1359.35129 · doi:10.1215/00127094-3645437
[40] Dan S Henningson, Anders Lundbladh, and Arne V Johansson. A mechanism for bypass transition from localized disturbances in wall-bounded shear flows. J. of Fluid Mech., 250:169-207, 1993. · Zbl 0773.76030
[41] B Hof, A Juel, and T Mullin. Scaling of the turbulence transition threshold in a pipe. Phys. rev. let., 91(24):244502, 2003. · Zbl 1049.76511
[42] H\"{o}rmander, Lars, The Nash-Moser theorem and paradifferential operators. Analysis, et cetera, 429-449 (1990), Academic Press, Boston, MA · Zbl 0711.35001
[43] Hwang, Hyung Ju; Vel\'{a}zquez, Juan J. L., On the existence of exponentially decreasing solutions of the nonlinear Landau damping problem, Indiana Univ. Math. J., 58, 6, 2623-2660 (2009) · Zbl 1193.35229 · doi:10.1512/iumj.2009.58.3835
[44] Lord Kelvin. Stability of fluid motion-rectilinear motion of viscous fluid between two parallel plates. Phil. Mag., (24):188, 1887. · JFM 25.1495.01
[45] Klainerman, S., The null condition and global existence to nonlinear wave equations. Nonlinear systems of partial differential equations in applied mathematics, Part 1, Santa Fe, N.M., 1984, Lectures in Appl. Math. 23, 293-326 (1986), Amer. Math. Soc., Providence, RI · Zbl 0599.35105
[46] PS Klebanoff, KD Tidstrom, and LM Sargent. The three-dimensional nature of boundary-layer instability. Journal of Fluid Mechanics, 12(01):1-34, 1962. · Zbl 0131.41901
[47] Kreiss, Gunilla; Lundbladh, Anders; Henningson, Dan S., Bounds for the threshold amplitudes in subcritical shear flows, J. Fluid Mech., 270, 175-198 (1994) · Zbl 0813.76024 · doi:10.1017/S0022112094004234
[48] Kukavica, Igor; Vicol, Vlad, On the radius of analyticity of solutions to the three-dimensional Euler equations, Proc. Amer. Math. Soc., 137, 2, 669-677 (2009) · Zbl 1156.76010 · doi:10.1090/S0002-9939-08-09693-7
[49] Landahl, M. T., A note on an algebraic instability of inviscid parallel shear flows, J. Fluid Mech., 98, 2, 243-251 (1980) · Zbl 0428.76049 · doi:10.1017/S0022112080000122
[50] Landau, L., On the vibrations of the electronic plasma, Acad. Sci. USSR. J. Phys., 10, 25-34 (1946) · Zbl 0063.03439
[51] M. Latini and A.J. Bernoff. Transient anomalous diffusion in Poiseuille flow. J. of Fluid Mech., 441:399-411, 2001. · Zbl 1008.76086
[52] G. Lemoult, J.-L. Aider, and J.E. Wesfreid. Experimental scaling law for the subcritical transition to turbulence in plane Poiseuille flow. Phy. Rev. E, 85(2):025303, 2012.
[53] Levermore, C. David; Oliver, Marcel, Analyticity of solutions for a generalized Euler equation, J. Differential Equations, 133, 2, 321-339 (1997) · Zbl 0876.35090 · doi:10.1006/jdeq.1996.3200
[54] Li, Y. Charles; Lin, Zhiwu, A resolution of the Sommerfeld paradox, SIAM J. Math. Anal., 43, 4, 1923-1954 (2011) · Zbl 1383.76140 · doi:10.1137/100794912
[55] Liefvendahl, Mattias; Kreiss, Gunilla, Bounds for the threshold amplitude for plane Couette flow, J. Nonlinear Math. Phys., 9, 3, 311-324 (2002) · Zbl 1009.35069 · doi:10.2991/jnmp.2002.9.3.5
[56] Lin, Zhiwu; Zeng, Chongchun, Inviscid dynamical structures near Couette flow, Arch. Ration. Mech. Anal., 200, 3, 1075-1097 (2011) · Zbl 1229.35197 · doi:10.1007/s00205-010-0384-9
[57] Anders Lundbladh, Dan S Henningson, and Satish C Reddy. Threshold amplitudes for transition in channel flows. In Transition, turbulence and combustion, pages 309-318. Springer, 1994.
[58] T.S. Lundgren. Strained spiral vortex model for turbulent fine structure. Phys. of Fl., 25:2193, 1982. · Zbl 0536.76034
[59] Majda, Andrew J.; Bertozzi, Andrea L., Vorticity and incompressible flow, Cambridge Texts in Applied Mathematics 27, xii+545 pp. (2002), Cambridge University Press, Cambridge · Zbl 0983.76001
[60] J. Malmberg, C. Wharton, C. Gould, and T. O’Neil. Plasma wave echo. Phys. Rev. Lett., 20(3):95-97, 1968.
[61] M. T. Montgomery and R. J. Kallenbach. A theory for vortex Rossby-waves and its application to spiral bands and intensity changes in hurricanes. Quarterly Journal of the Royal Meteorological Society, 123(538):435-465, 1997.
[62] Morrison, P. J., Hamiltonian description of the ideal fluid, Rev. Modern Phys., 70, 2, 467-521 (1998) · Zbl 1205.37093 · doi:10.1103/RevModPhys.70.467
[63] Mouhot, Cl\'{e}ment; Villani, C\'{e}dric, On Landau damping, Acta Math., 207, 1, 29-201 (2011) · Zbl 1239.82017 · doi:10.1007/s11511-011-0068-9
[64] Mullin, T., Experimental studies of transition to turbulence in a pipe. Annual review of fluid mechanics. Volume 43, 2011, Annu. Rev. Fluid Mech. 43, 1-24 (2011), Annual Reviews, Palo Alto, CA · Zbl 1210.76005 · doi:10.1146/annurev-fluid-122109-160652
[65] Nirenberg, L., An abstract form of the nonlinear Cauchy-Kowalewski theorem, J. Differential Geometry, 6, 561-576 (1972) · Zbl 0257.35001
[66] Nishida, Takaaki, A note on a theorem of Nirenberg, J. Differential Geom., 12, 4, 629-633 (1978) (1977) · Zbl 0368.35007
[67] M Nishioka, Y Ichikawa, et al. An experimental investigation of the stability of plane Poiseuille flow. Journal of Fluid Mechanics, 72(04):731-751, 1975.
[68] W. Orr. The stability or instability of steady motions of a perfect liquid and of a viscous liquid, Part I: a perfect liquid. Proc. Royal Irish Acad. Sec. A: Math. Phys. Sci., 27:9-68, 1907. · JFM 38.0741.02
[69] Steven A Orszag and Lawrence C Kells. Transition to turbulence in plane Poiseuille and plane Couette flow. J. of Fluid Mech., 96(1):159-205, 1980. · Zbl 0418.76036
[70] Rayleigh, Lord, On the Stability, or Instability, of certain Fluid Motions, Proc. Lond. Math. Soc., 11, 57-70 (1879/80) · JFM 12.0711.02 · doi:10.1112/plms/s1-11.1.57
[71] Reddy, Satish C.; Schmid, Peter J.; Baggett, Jeffrey S.; Henningson, Dan S., On stability of streamwise streaks and transition thresholds in plane channel flows, J. Fluid Mech., 365, 269-303 (1998) · Zbl 0927.76029 · doi:10.1017/S0022112098001323
[72] O Reynolds. An experimental investigation of the circumstances which determine whether the motion of water shall be direct or sinuous, and of the law of resistance in parallel channels. Proc. R. Soc. Lond., (35):84, 1883. · JFM 16.0845.02
[73] P.B. Rhines and W.R. Young. How rapidly is a passive scalar mixed within closed streamlines? J. of Fluid Mech., 133:133-145, 1983. · Zbl 0576.76088
[74] Romanov, V. A., Stability of plane-parallel Couette flow, Funkcional. Anal. i Prilo\v{z}en., 7, 2, 62-73 (1973) · Zbl 0287.76037
[75] D.D. Ryutov. Landau damping: half a century with the great discovery. Plasma physics and controlled fusion, 41(3A):A1, 1999.
[76] Schecter, D. A.; Dubin, D. H. E.; Cass, A. C.; Driscoll, C. F.; Lansky, I. M.; O’Neil, T. M., Inviscid damping of asymmetries on a two-dimensional vortex, Phys. Fluids, 12, 10, 2397-2412 (2000) · Zbl 1184.76483 · doi:10.1063/1.1289505
[77] Schmid, Peter J.; Henningson, Dan S., Stability and transition in shear flows, Applied Mathematical Sciences 142, xiv+556 pp. (2001), Springer-Verlag, New York · Zbl 0966.76003 · doi:10.1007/978-1-4613-0185-1
[78] G. B. Smith and M. T. Montgomery. Vortex axisymmetrization: Dependence on azimuthal wave-number or asymmetric radial structure changes. Quarterly Journal of the Royal Meteorological Society, 121(527):1615-1650, 1995.
[79] N. Tillmark and P.H. Alfredsson. Experiments on transition in plane Couette flow. J. Fluid Mech., 235:89-102, 1992.
[80] Trefethen, Lloyd N.; Embree, Mark, Spectra and pseudospectra, xviii+606 pp. (2005), Princeton University Press, Princeton, NJ · Zbl 1085.15009
[81] Trefethen, Lloyd N.; Trefethen, Anne E.; Reddy, Satish C.; Driscoll, Tobin A., Hydrodynamic stability without eigenvalues, Science, 261, 5121, 578-584 (1993) · Zbl 1226.76013 · doi:10.1126/science.261.5121.578
[82] Vanneste, J., Nonlinear dynamics of anisotropic disturbances in plane Couette flow, SIAM J. Appl. Math., 62, 3, 924-944 (2001/02) · Zbl 1035.76021 · doi:10.1137/S0036139900381420
[83] J. Vanneste, P.J. Morrison, and T. Warn. Strong echo effect and nonlinear transient growth in shear flows. Physics of Fluids, 10:1398, 1998.
[84] Waleffe, Fabian, Transition in shear flows. Nonlinear normality versus non-normal linearity, Phys. Fluids, 7, 12, 3060-3066 (1995) · Zbl 1026.76528 · doi:10.1063/1.868682
[85] Yaglom, Akiva M., Hydrodynamic instability and transition to turbulence, Fluid Mechanics and its Applications 100, xii+600 pp. (2012), Springer, Dordrecht · Zbl 1312.76020 · doi:10.1007/978-94-007-4237-6
[86] Young, Brent, Landau damping in relativistic plasmas, J. Math. Phys., 57, 2, 021502, 68 pp. (2016) · Zbl 1333.76095 · doi:10.1063/1.4939275
[87] J.H. Yu and C.F. Driscoll. Diocotron wave echoes in a pure electron plasma. IEEE Trans. Plasma Sci., 30(1), 2002.
[88] J.H. Yu, C.F. Driscoll, and T.M. O‘Neil. Phase mixing and echoes in a pure electron plasma. Phys. of Plasmas, 12(055701), 2005.
[89] Zillinger, Christian, Linear inviscid damping for monotone shear flows, Trans. Amer. Math. Soc., 369, 12, 8799-8855 (2017) · Zbl 1372.76045 · doi:10.1090/tran/6942
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.