×

On robust stability of incommensurate fractional-order systems. (English) Zbl 1451.93287

Summary: This paper investigates the robust stability of fractional-order systems described in pseudo-state space model with incommensurate fractional orders. An existing non-conservative robust stability criterion for integer-order systems is extended to incommensurate-order fractional systems by using the generalized Nyquist theorem. Some robust stability conditions for various uncertainty structures are proposed by employing the proposed criterion. Moreover, we focus on the interval uncertainty structure to discuss the conservatism of the common methods. A numerical example is provided to investigate that how the fractional-order of each pseudo-state can affect the robustness of the system. The effectiveness of the proposed methods is compared by applying them on the problem of space tether deployment with fractional-order control law.

MSC:

93D09 Robust stability
93C15 Control/observation systems governed by ordinary differential equations
26A33 Fractional derivatives and integrals
93C05 Linear systems in control theory
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Gutiérrez, R. E.; Rosário, J. M.; Machado, J. T., Fractional order calculus: basic concepts and engineering applications, Math Prob Eng, 2010, 1-19 (2010) · Zbl 1190.26002
[2] Matušů, R., Application of fractional order calculus to control theory, Int J Math Models Methods Appl Sci, 5, 7, 1162-1169 (2011)
[3] Chen, Y.; Petras, I.; Xue, D., Fractional order control - a tutorial, (2009 American control conference (2009))
[4] Koksal, M. E., Time and frequency responses of non-integer order RLC circuits, AIMS Math, 4, 1, 61-75 (2019)
[5] Tavazoei, M. S.; Haeri, M., Chaotic attractors in incommensurate fractional order systems, Physica D, 237, 20, 2628-2637 (2008) · Zbl 1157.26310
[6] Deng, W.; Li, C.; Lü, J., Stability analysis of linear fractional differential system with multiple time delays, Nonlinear Dyn., 48, 4, 409-416 (2007) · Zbl 1185.34115
[7] Badri, P.; Sojoodi, M., Stability and stabilization of fractional‐order systems with different derivative orders: an LMI approach, Asian J Control, 21, 5, 2270-2279 (2019) · Zbl 1432.93272
[8] Chen, Y.; Ahn, H. S.; Podlubny, I., Robust stability check of fractional order linear time invariant systems with interval uncertainties, IEEE Int Conf Mechatron Autom, 210-215 (2005)
[9] Ahn, H. S.; Chen, Y., Necessary and sufficient stability condition of fractional-order interval linear systems, Automatica, 44, 11, 2985-2988 (2008) · Zbl 1152.93455
[10] Lu, J. G.; Chen, G., Robust stability and stabilization of fractional-order interval systems: an LMI approach, IEEE Trans Automat Contr, 54, 6, 1294-1299 (2009) · Zbl 1367.93472
[11] Lu, J. G.; Chen, Y. Q., Robust stability and stabilization of fractional-order interval systems with the fractional order α: the 0<α<1 case, IEEE Trans Automat Contr, 55, 1, 152-158 (2009) · Zbl 1368.93506
[12] Lan, Y. H.; Zhou, Y., LMI-based robust control of fractional-order uncertain linear systems, Comput Math Appl, 62, 3, 1460-1471 (2011) · Zbl 1228.93087
[13] Adelipour, S.; Abooee, A.; Haeri, M., LMI-based sufficient conditions for robust stability and stabilization of LTI-fractional-order systems subjected to interval and polytopic uncertainties, Trans Inst Meas Control, 37, 10, 1207-1216 (2015)
[14] N’Doye, I.; Darouach, M.; Zasadzinski, M.; Radhy, N. E., Robust stabilization of uncertain descriptor fractional-order systems, Automatica, 49, 6, 1907-1913 (2013) · Zbl 1360.93620
[15] Li, Y.; Liu, H.; Wang, H., Robust stability and stabilization of interval uncertain descriptor fractional-order systems with the fractional-order α: the 1≤α<2 case, Math Prob Eng (2015) · Zbl 1394.93290
[16] Lu, J. G.; Chen, Y., Stability and stabilization of fractional-order linear systems with convex polytopic uncertainties, Fract Calculus Appl Anal, 16, 1, 142-157 (2013) · Zbl 1312.93081
[17] Chen, L.; Wu, R.; He, Y.; Yin, L., Robust stability and stabilization of fractional-order linear systems with polytopic uncertainties, Appl Math Comput, 257, 274-284 (2015) · Zbl 1338.93293
[18] Duarte-Mermoud, M. A.; Aguila-Camacho, N.; Gallegos, J. A.; Castro-Linares, R., Using general quadratic Lyapunov functions to prove Lyapunov uniform stability for fractional order systems, Commun Nonlinear Sci Numer Simul, 22, 1-3, 650-659 (2015) · Zbl 1333.34007
[19] Fernandez-Anaya, G.; Nava-Antonio, G.; Jamous-Galante, J.; Muñoz-Vega, R.; Hernández-Martínez, E. G., Lyapunov functions for a class of nonlinear systems using Caputo derivative, Commun Nonlinear Sci Numer Simul, 43, 91-99 (2017), https://doi.org/10.1016/j.cnsns.2016.06.031‏ · Zbl 1468.34008
[20] Qiu, J.; Ji, Y., Observer-based robust controller design for nonlinear fractional-order uncertain systems via LMI, Math Prob Eng (2017) · Zbl 1426.93112
[21] Li, P.; Chen, L.; Wu, R.; Machado, J. T.; Lopes, A. M.; Yuan, L., Robust asymptotic stability of interval fractional-order nonlinear systems with time-delay, J Franklin Inst, 355, 15, 7749-7763 (2018) · Zbl 1398.93281
[22] Tavazoei, M. S.; Haeri, M., A note on the stability of fractional order systems, Math Comput Simul, 79, 5, 1566-1576 (2009) · Zbl 1168.34036
[23] Koksal, M. E., Stability analysis of fractional differential equations with unknown parameters, Nonlinear Anal, 24, 2, 224-240 (2019) · Zbl 1418.93202
[24] Badri, V.; Tavazoei, M. S., Non-uniform reducing the involved differentiators’ orders and Lyapunov stability preservation problem in dynamic systems, IEEE Trans Circuits Syst II (2019)
[25] Lenka, B. K., Fractional comparison method and asymptotic stability results for multivariable fractional order systems, Commun Nonlinear Sci Numer Simul, 69, 398-415 (2019) · Zbl 1510.34016
[26] Zhou, Y.; Wang, H.; Liu, H., Generalized function projective synchronization of incommensurate fractional-order chaotic systems with inputs saturation, Int J Fuzzy Syst, 21, 3, 823-836 (2019)
[27] Lenka, B. K.; Banerjee, S., Sufficient conditions for asymptotic stability and stabilization of autonomous fractional order systems, Commun Nonlinear Sci Numer Simul, 56, 365-379 (2018) · Zbl 1510.34017
[28] Shahvali, M.; Naghibi-Sistani, M. B.; Modares, H., Distributed consensus control for a network of incommensurate fractional-order systems, IEEE Control Syst Lett, 3, 2, 481-486 (2019)
[29] Sun, G.; Zhu, Z. H., Fractional-order tension control law for deployment of space tether system, J Guid Control Dyn, 37, 6, 2057-2062 (2014)
[30] Shi, M.; Qin, K.; Liang, J.; Liu, J., Distributed control of uncertain multi-agent systems for tracking a leader with unknown fractional‐order dynamics, Int J Robust Nonlinear Control, 29, 7, 2254-2271 (2019) · Zbl 1418.93125
[31] Aguiar, B.; González, T.; Bernal, M., Comments on “Robust stability and stabilization of fractional-order interval systems with the fractional order α: the 0<α<1 case”, IEEE Trans Automat Contr, 60, 2, 582-583 (2014) · Zbl 1360.93517
[32] Podlubny, I., Fractional differential equations: an introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications (1999), Academic Press: Academic Press San Diego · Zbl 0924.34008
[33] Foo, Y. K.; Postlethwaite, I., Extensions of the small-mu test for robust stability, IEEE Trans Automat Contr, 33, 2, 172-176 (1988) · Zbl 0639.93047
[34] Bonnet, C.; Partington, J. R., Coprime factorizations and stability of fractional differential systems, Syst Control Lett, 41, 3, 167-174 (2000) · Zbl 0985.93048
[35] Sabatier, J.; Farges, C.; Trigeassou, J. C., A stability test for non-commensurate fractional order systems, Syst Control Lett, 62, 9, 739-746 (2013) · Zbl 1280.93076
[36] Gao, Z., A graphic stability criterion for non-commensurate fractional-order time-delay systems, Nonlinear Dyn, 78, 3, 2101-2111 (2014) · Zbl 1345.34123
[37] Malti, R.; Rapaić, M., Sufficient stability conditions of fractional systems with perturbed differentiation orders, IFAC-PapersOnLine, 50, 1, 14557-14562 (2017)
[38] Hyland, D. C.; Collins, E. G., An M-matrix and majorant approach to robust stability and performance analysis for systems with structured uncertainty, IEEE Trans Automat Contr, 34, 7, 699-710 (1989) · Zbl 0687.93021
[39] Postlethwaite, I.; Foo, Y. K., Robustness with simultaneous pole and zero movement across the jω-axis, Automatica, 21, 4, 433-443 (1985) · Zbl 0571.93023
[40] Yedavalli, R. K., Robust control of uncertain dynamic systems (2016), Springer-Verlag: Springer-Verlag New-York
[41] Tavazoei, M.; Asemani, M. H., Fractional-order-dependent global stability analysis and observer‐based synthesis for a class of nonlinear fractional‐order systems, Int J Robust Nonlinear Control, 28, 15, 4549-4564 (2018) · Zbl 1401.93177
[42] Farges, C.; Fadiga, L.; Sabatier, J., H∞ analysis and control of commensurate fractional order systems, Mechatronics, 23, 7, 772-780 (2013)
[43] Liang, S.; Wei, Y. H.; Pan, J. W.; Gao, Q.; Wang, Y., Bounded real lemmas for fractional order systems, Int J Autom Comput, 12, 2, 192-198 (2015)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.