×

Cell size and cell number as links between noncoding DNA and metabolic rate scaling. (English) Zbl 1095.92029

Summary: Genome size (\(C\)-value) affects cell size directly and specific metabolic rate indirectly. It has been suggested that the scaling exponents of interspecific metabolic rate allometries are by-products of the evolutionary diversification of \(C\)-values within narrow taxonomic groups, challenging the so-called ubiquitous 3/4-law. We question this view and suggest another approach to the problem.

MSC:

92C40 Biochemistry, molecular biology
92C37 Cell biology
92B10 Taxonomy, cladistics, statistics in mathematical biology
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Kozlowski, J.; Konarzewski, M.; Gawelczyk, A. T., Cell size as a link between noncoding DNA and metabolic rate scaling, PNAS, 100, 14080-14085 (2003)
[2] West, G. B.; Brown, J. H.; Enquist, B. J., Sci, 276, 122-126 (1997)
[3] West, G. B.; Brown, J. H.; Enquist, B. J., Sci, 284, 1677-1679 (1999)
[4] Darveau, C. A.; Suarez, R. K.; Andrews, R. D.; Hochachka, P. W., Nature, 417, 166-170 (2002)
[5] Kuikka, J. T., Scaling laws in physiology: relationships between size, function, metabolism and life expectancy, Int J Nonlin Sci Numer Simul, 4, 4, 317-327 (2003)
[6] Kuikka, J. T., Fractal analysis in medical imaging, Int J Nonlin Sci Numer Simul, 3, 2, 81-88 (2002) · Zbl 1091.92041
[7] Kuikka, J. T., Fractal analysis of day-to-day variation of heart rate and blood pressure: a case report, Int J Nonlin Sci Numer Simul, 6, 2, 107-112 (2005)
[8] He, J. H.; Chen, H., Effects of size and pH on metabolic rate, Int J Nonlin Sci Numer Simul, 4, 4, 429-432 (2003)
[9] He, J. H.; Zhang, J., Fifth dimension of life and the 4/5 allometric scaling law for human brain, Cell Biol Int, 28, 11, 809-815 (2004)
[10] He, J. H., A brief review on allometric scaling in biology, Lect Notes Comput Sci, 3314, 652-658 (2004)
[11] Haskell, J. P.; Ritchie, M. E.; Olff, H., Fractal geometry predicts varying body size scaling relationships for mammal and bird home ranges, Nature, 418, 527-530 (2002)
[12] He, J. H., He Chengtian’s inequality and its applications, Appl Math Computat, 151, 887-891 (2004) · Zbl 1043.01004
[13] He, J. H., Mysterious Pi and a possible link to DNA sequencing, Int J Nonlin Sci Numer Simul, 5, 263-274 (2004)
[14] He, J. H.; Wan, Y. Q.; Yu, J. Y., Allometric scaling and instability in electrospinning, Int J Nonlin Sci Numer Simul, 5, 3, 243-252 (2004)
[15] He, J. H.; Wan, Y. Q., Allometric scaling for voltage and current in electrospinning, Polymer, 45, 19, 673-6731 (2004)
[16] Taylor, C. R.; Maloiy, G. M.O.; Weibel, E. R.; Langman, V. A.; Kamau, J. M.Z.; Seeherman, H. J.; Heglund, N. C., Design of the mammalian respiratory system. III. Scaling maximum aerobic capacity to body mass: Wild and domestic mammals, Respir Physiol, 44, 25-37 (1981)
[17] Xiao, X.; Yao, J.-S.; Shao, S.-H., Particular symmetry in RNA sequence of SARS and the origin of SARS coronavirus, Int J Nonlin Sci Numer Simul, 6, 2, 181-186 (2005) · Zbl 1401.92154
[18] He, J. H.; Huang, Z., A novel model for allometric scaling laws for different organs, Chaos, Solitons & Fractals, 27, 4, 1108-1114 (2006) · Zbl 1079.92020
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.