Shioda, Tetsuji; Schütt, Matthias An interesting elliptic surface over an elliptic curve. (English) Zbl 1125.14024 Proc. Japan Acad., Ser. A 83, No. 3, 40-45 (2007). Reviewer: Noriko Yui (Kingston) MSC: 14J35 14J27 11G05 11G18 PDF BibTeX XML Cite \textit{T. Shioda} and \textit{M. Schütt}, Proc. Japan Acad., Ser. A 83, No. 3, 40--45 (2007; Zbl 1125.14024) Full Text: DOI arXiv Euclid OpenURL
Lei, Chunlin; Fang, Mingliang; Yang, Degui Normal families and shared values of meromorphic functions. (English) Zbl 1179.30033 Proc. Japan Acad., Ser. A 83, No. 3, 36-39 (2007). Reviewer: Lou Zengjian (Shantou Guangdong) MSC: 30D45 PDF BibTeX XML Cite \textit{C. Lei} et al., Proc. Japan Acad., Ser. A 83, No. 3, 36--39 (2007; Zbl 1179.30033) Full Text: DOI Euclid OpenURL
Shirosaki, Manabu; Taketani, Masaharu On meromorphic functions sharing two one-point sets and two two-point sets. (English) Zbl 1134.30327 Proc. Japan Acad., Ser. A 83, No. 3, 32-35 (2007). Reviewer: Zhibo Huang (Guangzhou) MSC: 30D35 PDF BibTeX XML Cite \textit{M. Shirosaki} and \textit{M. Taketani}, Proc. Japan Acad., Ser. A 83, No. 3, 32--35 (2007; Zbl 1134.30327) Full Text: DOI Euclid OpenURL
Kobayashi, Toshiyuki; Mano, Gen Integral formula of the unitary inversion operator for the minimal representation of \(\text{O}(p,q)\). (English) Zbl 1230.22007 Proc. Japan Acad., Ser. A 83, No. 3, 27-31 (2007). MSC: 22E30 22E46 43A80 PDF BibTeX XML Cite \textit{T. Kobayashi} and \textit{G. Mano}, Proc. Japan Acad., Ser. A 83, No. 3, 27--31 (2007; Zbl 1230.22007) Full Text: DOI arXiv Euclid OpenURL
Hoshi, Akinari; Miyake, Katsuya Tschirnhausen transformation of a cubic generic polynomial and a \(2\)-dimensional involutive Cremona transformation. (English) Zbl 1126.14018 Proc. Japan Acad., Ser. A 83, No. 3, 21-26 (2007). Reviewer: Georgi Hristov Georgiev (Shumen) MSC: 14E07 12F12 PDF BibTeX XML Cite \textit{A. Hoshi} and \textit{K. Miyake}, Proc. Japan Acad., Ser. A 83, No. 3, 21--26 (2007; Zbl 1126.14018) Full Text: DOI Euclid OpenURL
Oh, Jangheon On the first layer of anti-cyclotomic \(\mathbb Z_{p}\)-extension of imaginary quadratic fields. (English) Zbl 1123.11032 Proc. Japan Acad., Ser. A 83, No. 3, 19-20 (2007). Reviewer: Andrea Bandini (Pisa) MSC: 11R23 PDF BibTeX XML Cite \textit{J. Oh}, Proc. Japan Acad., Ser. A 83, No. 3, 19--20 (2007; Zbl 1123.11032) Full Text: DOI Euclid OpenURL