Bercu, Bernard; Fort, Jean-Claude A moment approach for the almost sure central limit theorem for martingales. (English) Zbl 1212.60064 Stud. Sci. Math. Hung. 45, No. 1, 139-159 (2008). MSC: 60G42 60F05 PDF BibTeX XML Cite \textit{B. Bercu} and \textit{J.-C. Fort}, Stud. Sci. Math. Hung. 45, No. 1, 139--159 (2008; Zbl 1212.60064) Full Text: DOI OpenURL
Fujita, Takahiko; Kawanishi, Yasuhiro A proof of Itô’s formula using a discrete Itô’s formula. (English) Zbl 1174.60021 Stud. Sci. Math. Hung. 45, No. 1, 125-134 (2008). Reviewer: Yuliya Mishura (Kyiv) MSC: 60G50 60H05 60J65 PDF BibTeX XML Cite \textit{T. Fujita} and \textit{Y. Kawanishi}, Stud. Sci. Math. Hung. 45, No. 1, 125--134 (2008; Zbl 1174.60021) Full Text: DOI OpenURL
Kaarli, Kalle Arithmetical affine complete varieties and inverse monoids. (English) Zbl 1174.08001 Stud. Sci. Math. Hung. 45, No. 1, 13-28 (2008). Reviewer: D. Jakubíková-Studenovská (Košice) MSC: 08A40 08A30 08B10 08C05 PDF BibTeX XML Cite \textit{K. Kaarli}, Stud. Sci. Math. Hung. 45, No. 1, 13--28 (2008; Zbl 1174.08001) Full Text: DOI OpenURL
Ettefagh, Mina The third dual of a Banach algebra. (English) Zbl 1174.46022 Stud. Sci. Math. Hung. 45, No. 1, 1-11 (2008). Reviewer: Dumitru Draghia (Bucuresti) MSC: 46H25 46H20 PDF BibTeX XML Cite \textit{M. Ettefagh}, Stud. Sci. Math. Hung. 45, No. 1, 1--11 (2008; Zbl 1174.46022) Full Text: DOI OpenURL
Breaz, Simion; Călugăreanu, Grigore Every Abelian group is determined by a subgroup lattice. (English) Zbl 1156.20024 Stud. Sci. Math. Hung. 45, No. 1, 135-137 (2008). MSC: 20E15 20K27 PDF BibTeX XML Cite \textit{S. Breaz} and \textit{G. Călugăreanu}, Stud. Sci. Math. Hung. 45, No. 1, 135--137 (2008; Zbl 1156.20024) Full Text: DOI OpenURL
Roynette, Bernard; Vallois, Pierre; Yor, Marc Penalizing a \(BES(d)\) process \((0<d<2)\) with a function of its local time. V. (English) Zbl 1164.60307 Stud. Sci. Math. Hung. 45, No. 1, 67-124 (2008). MSC: 60B10 60G17 60G40 60G44 60J25 60J35 60J55 60J60 60J65 PDF BibTeX XML Cite \textit{B. Roynette} et al., Stud. Sci. Math. Hung. 45, No. 1, 67--124 (2008; Zbl 1164.60307) Full Text: DOI OpenURL
Bauer, Claus Hua’s theorem on sums of five prime squares in arithmetic progressions. (English) Zbl 1164.11061 Stud. Sci. Math. Hung. 45, No. 1, 29-66 (2008). MSC: 11P32 11L07 PDF BibTeX XML Cite \textit{C. Bauer}, Stud. Sci. Math. Hung. 45, No. 1, 29--66 (2008; Zbl 1164.11061) Full Text: DOI OpenURL