×

Bayesian analysis of allelic penetrance models for complex binary traits. (English) Zbl 1452.62846

Summary: Complex binary traits result from an intricate network of genetic and environmental factors. To aid their genetic dissection, several generalized linear models have been described to detect interaction between genes. However, it is recognized that these models have limited genetic interpretation. To overcome this problem, the allelic penetrance approach was proposed to model the action of a dominant or a recessive allele at a single locus, and to describe two-locus independent, inhibition, and cumulative actions. Classically, a recessive inheritance requires the expression of both recessive alleles in homozygotes to obtain the phenotype (type I recessiveness). In previous work, recessiveness was defined alternatively as a situation where a recessive allele is able to express the phenotype when the dominant allele is not active (type II recessiveness). Both definitions of recessiveness are then discussed under the allelic penetrance models. Bayesian methods are applied to analyze two data sets: one regarding the effect of the haplotype [HLA-B8, SC01, DR3] on the inheritance of IgD and IgG4 immunoglobulin deficiencies in humans, and other related to two-locus action in the control of Listeria infection susceptibility in mice.

MSC:

62P10 Applications of statistics to biology and medical sciences; meta analysis
62F15 Bayesian inference
62-08 Computational methods for problems pertaining to statistics

Software:

WinBUGS; boa
PDFBibTeX XMLCite
Full Text: DOI Link

References:

[1] Alper, C. A.; Awdeh, Z., Incomplete penetrance of MHC susceptibility genes: Prospective analysis of polygenic MHC-determined traits, Tissue Antigens, 56, 199-206 (2000)
[2] Alper, C. A.; Marcus-Bagley, D.; Awdeh, Z.; Kruskall, M. S.; Eisenbarth, G. S.; Brink, S. J.; Katz, A. J.; Stein, R.; Bing, D. H.; Yunis, E. J.; Schur, P. H., Prospective analysis suggests susceptibility genes for deficiencies of IgA and several other immunoglobulins on the [HLA-B8, SC01, DR3] conserved extended haplotype, Tissue Antigens, 56, 207-216 (2000)
[3] Boyartchuk, V. L.; Broman, K. W.; Mosher, R. E.; D’Orazio, S. E.; Starnbach, M. N.; Dietrich, W. F., Multigenic control of Listeria monocytogenes susceptibility in mice, Nature Gen., 27, 259-260 (2001)
[4] Chen, M.-H.; Shao, Q.-M., Monte Carlo estimation of Bayesian credible and HPD intervals, J. Comp. Graph. Stat., 8, 69-92 (1999)
[5] Cordell, H., Epistasis: What it means, what it doesn’t mean and statistical methods to detect it in humans, Hum. Mol. Genet., 11, 2463-2468 (2002)
[6] Cordell, H.; Todd, J.; Hill, N.; Lord, C.; Lyons, P.; Peterson, L.; Wicker, L.; Clayton, D., Statistical modeling of interlocus interactions in a complex disease: Rejection of the multiplicative model of epistasis in type I diabetes, Genetics, 158, 357-367 (2001)
[7] Di Serio, C.; Vicard, P., Graphical chain models for the analysis of complex genetic diseases: An application to hypertension, Stat. Model., 5, 119-143 (2005) · Zbl 1069.62092
[8] Gelfand, A. E., Model determination using sampling-based methods, (Gilks, W. R.; Richardson, S.; Spiegelhalter, D. J., Markov Chain Monte Carlo in Practice (1996), Chapman and Hall: Chapman and Hall London), 145-161 · Zbl 0840.62003
[9] Gilks, W., Derivative-free adaptive rejection sampling for Gibbs sampling, (Bernardo, J. M.; Berger, J. O.; Dawid, A. P.; Smith, A. F.M., Bayesian Statistics 4 (1992), Oxford University Press: Oxford University Press Oxford), 641-665 · Zbl 0825.62407
[10] Griffiths, A. J.; Miller, J. H.; Suzuki, D. T.; Lewontin, R. C.; Gelbart, W. M., An Introduction to Genetic Analysis (2000), W. H. Freeman and Company: W. H. Freeman and Company New York
[11] Haegert, D. G.; Galutira, D.; Murray, T. J.; O’Connor, P.; Gadag, V., Identical twins discordant for multiple sclerosis have a shift in their T-cell receptor repertoires, Clin. Exp. Immunol., 134, 532-537 (2003)
[12] Hohler, T.; Hug, R.; Schneider, P. M.; Krummenauer, F.; Gripenberg-Lerche, C.; Granfors, K.; Marker-Hermann, E., Ankylosing spondylitis in monozygotic twins: Studies on immunological parameters, Ann. Rheum. Dis., 58, 435-440 (1999)
[13] Houwing-Duistermaat, J. J.; Bijkerk, C.; Hsu, L.; Stijnen, T.; Slagboom, E. P.; van Duijn, C. M., A unified approach to modelling linkage to quantitative and qualitative traits, Ann. Hum. Genet., 67, 457-463 (2003)
[14] Lalucque, H.; Silar, P., Incomplete penetrance and variable expressivity of growth defect as a consequence of knocking out two K+ transporters in the euascomycete fungus Podospora anserina, Genetics, 166, 125-133 (2004)
[15] Léon, K.; Faro, J.; Lage, A.; Carneiro, J., Inverse correlation between the incidences of autoimmune disease and infection predicted by a model of T cell mediated tolerance, J. Autoimmun., 22, 31-42 (2004)
[16] Lynch, M.; Walsh, B., Genetics and Analysis of Quantitative Traits (1998), Sinauer Associates, Inc: Sinauer Associates, Inc Sunderland, USA
[17] Newton, M. A.; Raftery, A. E., Approximate Bayesian inference by the weighted likelihood bootstrap (with discussion), J. Roy. Stat. Soc. B, 56, 3-48 (1994) · Zbl 0788.62026
[18] Paixão, T.; Carvalho, T. P.; Calado, D. P.; Carneiro, J., Quantitative insights into stochastic monoallelic expression of cytokine genes, Immunol. Cell Biol., 85, 315-322 (2007)
[19] Paulino, C. D.; Soares, P.; Neuhaus, J., Binomial regression with misclassification, Biometrics, 59, 670-675 (2003) · Zbl 1210.62199
[20] Raftery, A. E.; Newton, M. A.; Satagopan, J. M.; Krivitsky, P. N., Estimating the integrated likelihood via posterior simulation using the harmonic mean identity (with discussion), (Bernardo, J. M.; Bayarri, M. J.; Berger, J. O.; Dawid, A. P.; Heckerman, D.; Smith, A. F.M.; West, M., Bayesian Statistics 8 (2007), Oxford University Press: Oxford University Press Oxford), pp. 371-416 · Zbl 1252.62038
[21] Rakyan, V.; Blewitt, M. E.; Druker, R.; Preis, J. I.; Whitelaw, E., Metastable epialleles in mammals, Trends Genet., 18, 348-351 (2002)
[22] Risch, N., Linkage strategies for genetically complex traits. I. Multilocus models, Am. J. Hum. Genet., 46, 222-228 (1990)
[23] Sepúlveda, N., Statistical models for the joint action of two loci in complex binary traits (in portuguese). Master Thesis (Instituto Superior Técnico, Universidade Técnica de Lisboa, Lisboa, 2004); Sepúlveda, N., Statistical models for the joint action of two loci in complex binary traits (in portuguese). Master Thesis (Instituto Superior Técnico, Universidade Técnica de Lisboa, Lisboa, 2004)
[24] Sepúlveda, N.; Boucontet, L.; Pereira, P.; Carneiro, J., Stochastic modelling of T cell receptor \(\gamma\) gene rearrangement, J. Theor. Biol., 234, 153-165 (2005) · Zbl 1445.92183
[25] Sepúlveda, N.; Paulino, C. D.; Carneiro, J.; Penha-Gonçalves, C., Allelic penetrance approach as a tool to model two-locus interaction in complex binary traits, Heredity, 99, 173-184 (2007)
[26] Smith, B., Bayesian output analysis program (BOA) version 1.1.6 user’s manual. (Department of Biostatistics, College of Public Health, University of Iowa, 2007); Smith, B., Bayesian output analysis program (BOA) version 1.1.6 user’s manual. (Department of Biostatistics, College of Public Health, University of Iowa, 2007)
[27] Spiegelhalter, D.; Best, N.; Carlin, B.; van der Linden, A., Bayesian measures of model complexity and fit (with discussion), J. Roy. Stat. Soc. B, 64, 583-640 (2002) · Zbl 1067.62010
[28] Spiegelhalter, D., Thomas, A., Best, N., Lunn, D., WinBUGS user manual, Version 1.4. (MRC Biostatistics Unit, Institute of Public Health & Department of Epidemiology and Public Health, Imperial College School of Medicine, 2003); Spiegelhalter, D., Thomas, A., Best, N., Lunn, D., WinBUGS user manual, Version 1.4. (MRC Biostatistics Unit, Institute of Public Health & Department of Epidemiology and Public Health, Imperial College School of Medicine, 2003)
[29] Stewart, J., Towards the genetic analysis of multifactorial diseases: The estimation of allele frequency and epistasis, Hum. Hered., 54, 118-131 (2002)
[30] Strickland, F. M.; Richardson, B. C., Epigenetics in human autoimmunity, Autoimmunity, 41, 278-286 (2008)
[31] Tanner, M. A.; Wong, W. H., The calculation of posterior distributions by data augmentation (with discussion), J. Am. Stat. Assoc., 82, 528-550 (1987)
[32] van Vliet, J.; Oates, N. A.; Whitelaw, E., Epigenetic mechanisms in the context of complex diseases, Cell. Mol. Life Sci., 64, 1531-1538 (2007)
[33] Vieland, V.; Huang, J., Two-locus heterogeneity cannot be distinguished from two-locus epistasis on the basis of affected-sib-pairs, Am. J. Hum. Genet., 73, 223-232 (2003)
[34] Yi, N.; Xu, S., A random model approach to mapping quantitative trait loci for complex binary traits in outbred populations, Genetics, 153, 1029-1040 (1999)
[35] Zipris, D.; Crow, A. R.; Delovitch, T. L., Altered thymic and peripheral T-lymphocyte repertoire preceding onset of diabetes in NOD, Diabetes, 40, 429-435 (1991)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.