×

Existence results for a coupled system of nonlinear fractional three-point boundary value problems at resonance. (English) Zbl 1217.34031

Summary: Some new Banach spaces be introduced. Based on those new Banach spaces and by using the coincidence degree theory, we present two existence results for a coupled system of nonlinear fractional differential equations with three-point boundary conditions at resonance case.

MSC:

34B10 Nonlocal and multipoint boundary value problems for ordinary differential equations
26A33 Fractional derivatives and integrals
34A08 Fractional ordinary differential equations
45J05 Integro-ordinary differential equations
47N20 Applications of operator theory to differential and integral equations
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Agarwal, R. P.; Lakshmikantham, V.; Nieto, J. J., On the concept of solution for fractional differential equations with uncertainty, Nonlinear Anal. TMA, 72, 2859-2862 (2010) · Zbl 1188.34005
[2] Ahmad, B.; Nieto, J. J., Existence results for a coupled system of nonlinear fractional differential equations with three-point boundary conditions, Comput. Math. Appl., 58, 1838-1843 (2009) · Zbl 1205.34003
[3] Babakhani, A.; Gejji, V. D., Existence of positive solutions of nonlinear fractional differential equations, J. Math. Anal. Appl., 278, 434-442 (2003) · Zbl 1027.34003
[4] Bai, Z., On positive solutions of a nonlocal fractional boundary value problem, Nonlinear Anal. TMA, 72, 916-924 (2010) · Zbl 1187.34026
[5] Bai, Z.; Lü, H., Positive solutions of boundary value problems of nonlinear fractional differential equation, J. Math. Anal. Appl., 311, 495-505 (2005) · Zbl 1079.34048
[6] Bai, Z.; Zhang, Y., The existence of solutions for a fractional multi-point boundary value problem, Comput. Math. Appl., 60, 2364-2372 (2010) · Zbl 1205.34018
[7] Baleanu, D.; Mustafa, O. G., On the global existence of solutions to a class of fractional differential equations, Comput. Math. Appl., 59, 1835-1841 (2010) · Zbl 1189.34006
[8] Baleanu, D.; Mustafa, O. G., On the asymptotic integration of a class of sublinear fractional differential equations, J. Math. Phys., 50, 123520 (2009), (14 pages) · Zbl 1373.34004
[9] Baleanu, D.; Mustafa, O. G.; Agarwal, R. P., On the solution set for a class of sequential fractional differential equations, J. Phys. A: Math. Theor., 43, 385209 (2010) · Zbl 1216.34004
[10] Bonilla, B.; Rivero, M.; Rodriguez-Germa, L.; Trujillo, J. J., Fractional differential equations as alternative models to nonlinear differential equations, Appl. Math. Comput., 187, 79-88 (2007) · Zbl 1120.34323
[11] Chang, Y. K.; Nieto, J. J., Some new existence results for fractional differential inclusions with boundary conditions, Math. Comput. Modelling, 49, 605-609 (2009) · Zbl 1165.34313
[12] Chen, Y.; An, H., Numerical solutions of coupled Burgers equations with time and space fractional derivatives, Appl. Math. Comput., 200, 87-95 (2008) · Zbl 1143.65102
[13] El-Sayed, A. M.A., Nonlinear functional differential equations of arbitrary orders, Nonlinear Anal. TMA, 33, 181-186 (1998) · Zbl 0934.34055
[14] Gafiychuk, V.; Datsko, B.; Meleshko, V., Mathematical modeling of time fractional reaction-diffusion systems, J. Comput. Appl. Math., 220, 215-225 (2008) · Zbl 1152.45008
[15] Gejji, V. D., Positive solutions of a system of non-autonomous fractional differential equations, J. Math. Anal. Appl., 302, 56-64 (2005) · Zbl 1064.34004
[16] Kilbas, A. A.; Marichev, O. I.; Samko, S. G., Fractional Integral and Derivatives (Theory and Applications) (1993), Gordon and Breach: Gordon and Breach Switzerland · Zbl 0818.26003
[17] Kilbas, A. A.; Srivastava, H. M.; Trujillo, J. J., Theory and Applications of Fractional Differential Equations (2006), Elsevier B.V.: Elsevier B.V. Netherlands · Zbl 1092.45003
[18] Lakshmikantham, V.; Leela, S.; Vasundhara Devi, J., Theory of Fractional Dynamic Systems (2009), Cambridge Academic Publishers: Cambridge Academic Publishers Cambridge · Zbl 1188.37002
[19] Lakshmikantham, V.; Vatsala, A. S., Basic theory of fractional differential equations, Nonlinear Anal. TMA, 69, 2677-2682 (2008) · Zbl 1161.34001
[20] Lakshmikantham, V.; Leela, S., Nagumo-type uniqueness result for fractional differential equations, Nonlinear Anal. TMA, 71, 2886-2889 (2009) · Zbl 1177.34003
[21] Lakshmikantham, V.; Leela, S., A Krasnoselskii-Krein-type uniqueness result for fractional differential equations, Nonlinear Anal. TMA, 71, 3421-3424 (2009) · Zbl 1177.34004
[22] Lakshmikantham, V.; Vatsala, A. S., Theory of fractional differential inequalities and applications, Commun. Appl. Anal., 11, 395-402 (2007) · Zbl 1159.34006
[23] Lakshmikantham, V.; Vatsala, A. S., General uniqueness and monotone iterative technique for fractional differential equations, Appl. Math. Lett., 21, 828-834 (2008) · Zbl 1161.34031
[24] Lazarević, M. P., Finite time stability analysis of \(P D^\alpha\) fractional control of robotic time-delay systems, Mech. Res. Comm., 33, 269-279 (2006) · Zbl 1192.70008
[25] Miller, K. S., Fractional differential equations, J. Fract. Calc., 3, 49-57 (1993) · Zbl 0781.34006
[26] Su, X., Boundary value problem for a coupled system of nonlinear fractional differential equations, Appl. Math. Lett., 22, 64-69 (2009) · Zbl 1163.34321
[27] Zhang, Y.; Bai, Z., Existence of solutions for nonlinear fractional three-point boundary value problems at resonance, J. Appl. Math. Comput. (2010)
[28] Liu, B., Solvability of multi-point boundary value problem at resonance II, Appl. Math. Comput., 136, 353-377 (2003) · Zbl 1053.34016
[29] Mawhin, J., Topological degree and boundary value problems for nonlinear differential equations, (Fitzpatrick, P. M.; Martelli, M.; Mawhin, J.; Nussbaum, R., Topological Methods for Ordinary Differential Equatons. Topological Methods for Ordinary Differential Equatons, Lecture Notes in Mathematics, vol. 1537 (1991), Springer: Springer Berlin), 74-142 · Zbl 0798.34025
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.