×

Dynamic properties of phase diagram in cylindrical ferroelectric nanotubes. (English) Zbl 1252.82118

Summary: The dynamic properties of phase diagrams in cylindrical ferroelectric nanotubes were investigated by utilizing the effective-field theory with correlations. Three different structure mechanisms are discussed by performing three different interaction functions. Effects of structure factors of the ferroelectric nanotubes are shown in phase diagrams. A linear relation between the crossover value of transverse field in inner-layer of nanotube and the exchange interaction are revealed. Moreover, for the first time, the phase transition characteristics are shown both in 2-D and 3-D phase diagrams by comparing the variations of the ferroelectric region and the morphology vividly. In comparison, results of the usual mean-field approximation are also presented in some phase diagrams, it suggest that the differential operator technique with correlations reduces some extent of the ferroelectric features of the ferroelectric nanotube.

MSC:

82D45 Statistical mechanics of ferroelectrics
82D80 Statistical mechanics of nanostructures and nanoparticles
82B30 Statistical thermodynamics
81T10 Model quantum field theories
82B10 Quantum equilibrium statistical mechanics (general)
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Zhu, Chen; Chentao, Yang; Bo, Li; Bangchao, Yang, Mater. Lett., 60, 1559 (2006)
[2] Park, Sang-Man; Lee, Sung-Gap; Yun, Sang-Eun, Thin Solid Films, 516, 5282 (2008)
[3] Khaenamkaew, P.; Muensit, S.; Bdikin, I. K.; Kholkin, A. L., Mater. Chem. Phys., 102, 159 (2007)
[4] Tenne, D. A., Science, 313, 1614 (2006)
[5] Wu, J. G.; Xiao, D. Q.; Zhu, J. G.; Zhu, J. L.; Tan, J. Z.; Zhang, Q. L., Appl. Phys. Lett., 90, 082902 (2007)
[6] Tsurumi, T.; Harigai, T.; Tanaka, D.; Nam, S. M.; Kakemoto, H.; Wada, S.; Saito, K., Appl. Phys. Lett., 85, 5016 (2004)
[7] Tilly, D. R.; Žekš, B., Solid State Comm., 49, 823 (1984)
[8] Scott, J. F.; Duiker, H. M.; Beale, P. D.; Pouligny, B.; Dimmler, K.; Paris, M.; Butler, D.; Eaton, S., Physica B, 150, 160 (1988)
[9] Park, Y., Solid State Comm., 112, 167 (1999)
[10] Wang, C. L.; Zhong, W. L.; Zhang, P. L., J. Phys.: Condens. Matter, 3, 4743 (1992)
[11] Sy, H. K., J. Phys.: Condens. Matter, 5, 1231 (1993)
[12] Teng, B. H.; Sy, H. K., Phys. Rev. B, 70, 104115 (2004)
[13] Teng, Baohua; Sy, H. K., Physica B, 348, 485 (2004)
[14] Wang, Chundong; Teng, Baohua; Zhang, Xianjun; Lu, Zhaoxin; Liu, Liwei; Cheng, Dengmu; Lu, Xiaohua, Physica A, 388, 1472 (2009)
[15] Wang, C. D.; Teng, B. H.; Zhang, X. J.; Lu, X. H.; Cheng, D. M.; Lu, Z. X., Mod. Phys. Lett. B, 22, 3099 (2008)
[16] Wesselinowa, J. M., Phys. Status Solidi B, 231, 187 (2002)
[17] Wesselinowa, J. M., Solid State Comm., 121, 489 (2002)
[18] Kaneyoshi, T., Physica A, 319, 355 (2003) · Zbl 1091.82513
[19] Kaneyoshi, T., Phys. Rev. B, 55, 12497 (1997)
[20] Kaneyoshi, T., Phys. Status Solidi B, 1-9 (2010)
[21] Lu, Z. X.; Teng, B. H.; Rong, Y. H.; Lu, X. H.; Yang, X., Phys. Scr., 81, 035004 (2010)
[22] Arhchoui, H.; El Amraoui, Y.; Mezzane, D.; Lukyanchuk, I., Eur. Phys. J. Appl. Phys., 48, 10503 (2009)
[23] Kaneyoshi, T., J. Magn. Magn. Mater., 321, 3630 (2009)
[24] Kaneyoshi, T., J. Magn. Magn. Mater., 322, 3014 (2010)
[25] Kaneyoshi, T., J. Magn. Magn. Mater., 322, 3410 (2010)
[26] Kaneyoshi, T., J. Magn. Magn. Mater., 323, 1145 (2011)
[27] Kaneyoshi, T., Phys. Status Solidi B, 248, 250 (2011)
[28] Chan, K. S.; Wang, L. G., Nanotechnology, 19, 405401 (2008)
[29] Chan, K. S.; Wei, J. H., Phys. Rev. B, 75, 125310 (2007)
[30] Wang, L. G.; Chan, K. S., Appl. Phys. Lett., 91, 063128 (2007)
[31] Sarmento, E. F.; Tucker, J. W., J. Magn. Magn. Mater., 118, 133 (1993)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.