Craig, Th. On theta-functions with complex characteristics. (English) JFM 16.0446.01 Sylv. Am. J. VII, 337-368 (1884). Reviewer: Krazer, Dr. (Würzburg) MSC: 14K25 PDF BibTeX XML Cite \textit{Th. Craig}, Am. J. Math. 7, 337--368 (1884; JFM 16.0446.01) OpenURL
Daniels, A. L. On Weierstrass’ theory of elliptic functions. Third note. (English) JFM 16.0396.02 Sylv. Am. J. VII, 82-99 (1884). Reviewer: Müller, F., Prof. (Berlin) MSC: 33E05 PDF BibTeX XML Cite \textit{A. L. Daniels}, Am. J. Math. 7, 82--99 (1884; JFM 16.0396.02) Full Text: DOI OpenURL
Jenkins, Morgan Note on Prof. Sylvester’s “constructive theory of partitions.”. (English) JFM 16.0143.05 Sylv. Am. J. VII, 74-82 (1884). Reviewer: Simon, Dr. (Berlin) MSC: 11P81 PDF BibTeX XML Cite \textit{M. Jenkins}, Am. J. Math. 7, 74--82 (1884; JFM 16.0143.05) Full Text: DOI OpenURL
Cayley, A. Non-unitary partition tables. (English) JFM 16.0143.04 Sylv. Am. J. VII, 57-58 (1884). MSC: 11P81 PDF BibTeX XML Cite \textit{A. Cayley}, Am. J. Math. 7, 57--58 (1884; JFM 16.0143.04) Full Text: DOI Link OpenURL
Cayley Tables of the symmetric functions of the roots of the degree 10, from the form \[ 1+bx+\frac{cx^2}{1\cdot2}+\cdots=(1-\alpha x)(1-\beta x)(1-\gamma x)\cdots. \]. (English) JFM 16.0128.03 Sylv. Am. J. VII, 47-57 (1884). Reviewer: Netto, Prof. (Berlin) PDF BibTeX XML Cite \textit{Cayley}, Am. J. Math. 7, 47--57 (1884; JFM 16.0128.03) Full Text: DOI OpenURL
MacMahon, P. A. On perpetuants. (English) JFM 16.0104.04 Sylv. Am. J. VII, 26-47 (1884). Reviewer: Meyer, F. Prof. (Tübingen) PDF BibTeX XML Cite \textit{P. A. MacMahon}, Am. J. Math. 7, 26--47 (1884; JFM 16.0104.04) Full Text: DOI OpenURL
Cayley, A. Seminvariant tables. (English) JFM 16.0104.03 Sylv. Am. J. VII, 59-73 (1884). PDF BibTeX XML Cite \textit{A. Cayley}, Am. J. Math. 7, 59--73 (1884; JFM 16.0104.03) Full Text: DOI OpenURL
Cayley, A. A memoir on seminvariants. (English) JFM 16.0104.02 Sylv. Am. J. VII, 1-25 (1884). PDF BibTeX XML Cite \textit{A. Cayley}, Am. J. Math. 7, 1--25 (1884; JFM 16.0104.02) Full Text: DOI OpenURL