×

On classifying the divisor involutions in Calabi-Yau threefolds. (English) Zbl 1342.81425

Summary: In order to support the odd moduli in models of (type IIB) string compactification, we classify the Calabi-Yau threefolds with \(h^{1,1}\leq 4\) which exhibit pairs of identical divisors, with different line-bundle charges, mapping to each other under possible divisor exchange involutions. For this purpose, the divisors of interest are identified as completely rigid surface, Wilson surface, \(K3\) surface and some other deformation surfaces. Subsequently, various possible exchange involutions are examined under the symmetry of Stanley-Reisner Ideal. In addition, we search for the Calabi-Yau theefolds which contain a divisor with several disjoint components. Under certain reflection involution, such spaces also have nontrivial odd components in \((1,1)\)-cohomology class. String compactifications on such Calabi-Yau orientifolds with non-zero \(h^{1,1}-(CY3/\sigma)\) could be promising for concrete model building in both particle physics and cosmology. In the spirit of using such Calabi-Yau orientifolds in the context of large volume scenario, we also present some concrete examples of (strong/weak) swiss-cheese type volume form.

MSC:

81T30 String and superstring theories; other extended objects (e.g., branes) in quantum field theory
14J32 Calabi-Yau manifolds (algebro-geometric aspects)
14M25 Toric varieties, Newton polyhedra, Okounkov bodies
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] M. Graña, Flux compactifications in string theory: a comprehensive review, Phys. Rept.423 (2006) 91 [hep-th/0509003] [INSPIRE]. · doi:10.1016/j.physrep.2005.10.008
[2] D. Lüst, S. Reffert, E. Scheidegger, W. Schulgin and S. Stieberger, Moduli stabilization in type IIB orientifolds (II), Nucl. Phys.B 766 (2007) 178 [hep-th/0609013] [INSPIRE]. · Zbl 1119.81089 · doi:10.1016/j.nuclphysb.2006.12.017
[3] S. Kachru, R. Kallosh, A.D. Linde and S.P. Trivedi, De Sitter vacua in string theory, Phys. Rev.D 68 (2003) 046005 [hep-th/0301240] [INSPIRE]. · Zbl 1244.83036
[4] V. Balasubramanian, P. Berglund, J.P. Conlon and F. Quevedo, Systematics of moduli stabilisation in Calabi-Yau flux compactifications, JHEP03 (2005) 007 [hep-th/0502058] [INSPIRE]. · doi:10.1088/1126-6708/2005/03/007
[5] S. Gukov, C. Vafa and E. Witten, CFT’s from Calabi-Yau four folds, Nucl. Phys.B 584 (2000) 69 [Erratum ibid.B 608 (2001) 477] [hep-th/9906070] [INSPIRE]. · Zbl 0984.81143
[6] T.R. Taylor and C. Vafa, R R flux on Calabi-Yau and partial supersymmetry breaking, Phys. Lett.B 474 (2000) 130 [hep-th/9912152] [INSPIRE]. · Zbl 0959.81105
[7] K. Dasgupta, G. Rajesh and S. Sethi, M theory, orientifolds and G-flux, JHEP08 (1999) 023 [hep-th/9908088] [INSPIRE]. · Zbl 1060.81575 · doi:10.1088/1126-6708/1999/08/023
[8] E. Witten, Nonperturbative superpotentials in string theory, Nucl. Phys.B 474 (1996) 343 [hep-th/9604030] [INSPIRE]. · Zbl 0925.32012 · doi:10.1016/0550-3213(96)00283-0
[9] K. Becker, M. Becker, M. Haack and J. Louis, Supersymmetry breaking and α′corrections to flux induced potentials, JHEP06 (2002) 060 [hep-th/0204254] [INSPIRE]. · doi:10.1088/1126-6708/2002/06/060
[10] R. Blumenhagen, S. Moster and E. Plauschinn, Moduli stabilisation versus chirality for MSSM like type IIB orientifolds, JHEP01 (2008) 058 [arXiv:0711.3389] [INSPIRE]. · doi:10.1088/1126-6708/2008/01/058
[11] A. Collinucci, M. Kreuzer, C. Mayrhofer and N.-O. Walliser, Four-modulus ‘Swiss cheese’ chiral models, JHEP07 (2009) 074 [arXiv:0811.4599] [INSPIRE]. · doi:10.1088/1126-6708/2009/07/074
[12] K. Bobkov, V. Braun, P. Kumar and S. Raby, Stabilizing all Kähler moduli in type IIB orientifolds, JHEP12 (2010) 056 [arXiv:1003.1982] [INSPIRE]. · Zbl 1294.81166 · doi:10.1007/JHEP12(2010)056
[13] T.W. Grimm, M. Kerstan, E. Palti and T. Weigand, On fluxed instantons and moduli stabilisation in IIB orientifolds and F-theory, Phys. Rev.D 84 (2011) 066001 [arXiv:1105.3193] [INSPIRE].
[14] M. Cicoli, C. Mayrhofer and R. Valandro, Moduli stabilisation for chiral global models, JHEP02 (2012) 062 [arXiv:1110.3333] [INSPIRE]. · Zbl 1309.81208 · doi:10.1007/JHEP02(2012)062
[15] V. Balasubramanian, P. Berglund, V. Braun and I. Garcia-Etxebarria, Global embeddings for branes at toric singularities, JHEP10 (2012) 132 [arXiv:1201.5379] [INSPIRE]. · Zbl 1397.81220 · doi:10.1007/JHEP10(2012)132
[16] M. Cicoli, S. Krippendorf, C. Mayrhofer, F. Quevedo and R. Valandro, D-branes at del Pezzo singularities: global embedding and moduli stabilisation, JHEP09 (2012) 019 [arXiv:1206.5237] [INSPIRE]. · Zbl 1397.81228 · doi:10.1007/JHEP09(2012)019
[17] M. Cicoli, S. Krippendorf, C. Mayrhofer, F. Quevedo and R. Valandro, D3/D7 branes at singularities: constraints from global embedding and moduli stabilisation, JHEP07 (2013) 150 [arXiv:1304.0022] [INSPIRE]. · Zbl 1342.83345 · doi:10.1007/JHEP07(2013)150
[18] X. Gao and P. Shukla, Stabilization of odd axions in LARGE volume scenario, arXiv:1307.1141 [INSPIRE]. · Zbl 1284.81232
[19] R. Donagi, B.A. Ovrut, T. Pantev and D. Waldram, Spectral involutions on rational elliptic surfaces, Adv. Theor. Math. Phys.5 (2002) 499 [math.AG/0008011] [INSPIRE].
[20] B.A. Ovrut, T. Pantev and R. Reinbacher, Invariant homology on standard model manifolds, JHEP01 (2004) 059 [hep-th/0303020] [INSPIRE]. · Zbl 1243.14031 · doi:10.1088/1126-6708/2004/01/059
[21] R. Blumenhagen, V. Braun, T.W. Grimm and T. Weigand, GUTs in type IIB orientifold compactifications, Nucl. Phys.B 815 (2009) 1 [arXiv:0811.2936] [INSPIRE]. · Zbl 1194.81288 · doi:10.1016/j.nuclphysb.2009.02.011
[22] M. Cicoli, M. Kreuzer and C. Mayrhofer, Toric K3-fibred Calabi-Yau manifolds with del Pezzo divisors for string compactifications, JHEP02 (2012) 002 [arXiv:1107.0383] [INSPIRE]. · Zbl 1309.81149 · doi:10.1007/JHEP02(2012)002
[23] A. Collinucci, New F-theory lifts. II. Permutation orientifolds and enhanced singularities, JHEP04 (2010) 076 [arXiv:0906.0003] [INSPIRE]. · Zbl 1272.81147 · doi:10.1007/JHEP04(2010)076
[24] M. Kreuzer and H. Skarke, Complete classification of reflexive polyhedra in four-dimensions, Adv. Theor. Math. Phys.4 (2002) 1209 [hep-th/0002240] [INSPIRE]. · Zbl 1017.52007
[25] J. Gray et al., Calabi-Yau manifolds with large volume vacua, Phys. Rev.D 86 (2012) 101901 [arXiv:1207.5801] [INSPIRE].
[26] R. Blumenhagen and M. Schmidt-Sommerfeld, Power towers of string instantons for N = 1 vacua, JHEP07 (2008) 027 [arXiv:0803.1562] [INSPIRE]. · doi:10.1088/1126-6708/2008/07/027
[27] C. Petersson, P. Soler and A.M. Uranga, D-instanton and polyinstanton effects from type-I’ D0-brane loops, JHEP06 (2010) 089 [arXiv:1001.3390] [INSPIRE]. · Zbl 1288.81119 · doi:10.1007/JHEP06(2010)089
[28] M. Cicoli, F.G. Pedro and G. Tasinato, Poly-instanton inflation, JCAP12 (2011) 022 [arXiv:1110.6182] [INSPIRE]. · doi:10.1088/1475-7516/2011/12/022
[29] R. Blumenhagen, X. Gao, T. Rahn and P. Shukla, A note on poly-instanton effects in type IIB orientifolds on Calabi-Yau threefolds, JHEP06 (2012) 162 [arXiv:1205.2485] [INSPIRE]. · Zbl 1397.81226 · doi:10.1007/JHEP06(2012)162
[30] R. Blumenhagen, X. Gao, T. Rahn and P. Shukla, Moduli stabilization and inflationary cosmology with poly-instantons in type IIB orientifolds, JHEP11 (2012) 101 [arXiv:1208.1160] [INSPIRE]. · Zbl 1397.83129 · doi:10.1007/JHEP11(2012)101
[31] X. Gao and P. Shukla, On non-Gaussianities in two-field poly-instanton inflation, JHEP03 (2013) 061 [arXiv:1301.6076] [INSPIRE]. · doi:10.1007/JHEP03(2013)061
[32] M. Bianchi, A. Collinucci and L. Martucci, Magnetized E3-brane instantons in F-theory, JHEP12 (2011) 045 [arXiv:1107.3732] [INSPIRE]. · Zbl 1306.81197 · doi:10.1007/JHEP12(2011)045
[33] J. Louis, M. Rummel, R. Valandro and A. Westphal, Building an explicit de Sitter, JHEP10 (2012) 163 [arXiv:1208.3208] [INSPIRE]. · Zbl 1397.83201 · doi:10.1007/JHEP10(2012)163
[34] M. Cicoli, C. Burgess and F. Quevedo, Anisotropic modulus stabilisation: strings at LHC scales with micron-sized extra dimensions, JHEP10 (2011) 119 [arXiv:1105.2107] [INSPIRE]. · Zbl 1303.81154 · doi:10.1007/JHEP10(2011)119
[35] D. Lüst and X. Zhang, Four Kähler moduli stabilisation in type IIB orientifolds with K3-fibred Calabi-Yau threefold compactification, JHEP05 (2013) 051 [arXiv:1301.7280] [INSPIRE]. · Zbl 1342.81599 · doi:10.1007/JHEP05(2013)051
[36] X. Gao, Scanning tools for toric analyze, (2013).
[37] R. Blumenhagen, B. Jurke, T. Rahn and H. Roschy, Cohomology of line bundles: a computational algorithm, J. Math. Phys.51 (2010) 103525 [arXiv:1003.5217] [INSPIRE]. · Zbl 1314.55012 · doi:10.1063/1.3501132
[38] CohomCalg package webpage, http://wwwth.mppmu.mpg.de/members/blumenha/cohomcalg/, (2010).
[39] M. Kreuzer and H. Skarke, PALP: a package for analyzing lattice polytopes with applications to toric geometry, Comput. Phys. Commun.157 (2004) 87 [math/0204356] [INSPIRE]. · Zbl 1196.14007 · doi:10.1016/S0010-4655(03)00491-0
[40] A.P. Braun, J. Knapp, E. Scheidegger, H. Skarke and N.-O. Walliser, PALP — a user manual, arXiv:1205.4147 [INSPIRE].
[41] W. Decker, G.-M. Greuel, G. Pfister and H. Schönemann, Singular 3-1-6 — a computer algebra system for polynomial computations webpage, http://www.singular.uni-kl.de/. · Zbl 1344.13002
[42] The Sage Development Team YYYY., W. Stein et al., Sage Mathematics Software (Version x.y.z), http://www.sagemath.org/.
[43] S. Hosono, A. Klemm, S. Theisen and S.-T. Yau, Mirror symmetry, mirror map and applications to Calabi-Yau hypersurfaces, Commun. Math. Phys.167 (1995) 301 [hep-th/9308122] [INSPIRE]. · Zbl 0814.53056 · doi:10.1007/BF02100589
[44] X. Gao, Representation of vector-bundle valued cohomology on hypersurface, Mathematica file, (2013).
[45] P. Candelas, A. Dale, C. Lütken and R. Schimmrigk, Complete intersection Calabi-Yau manifolds, Nucl. Phys.B 298 (1988) 493 [INSPIRE]. · doi:10.1016/0550-3213(88)90352-5
[46] J. Gray, A.S. Haupt and A. Lukas, All complete intersection Calabi-Yau four-folds, JHEP07 (2013) 070 [arXiv:1303.1832] [INSPIRE]. · Zbl 1342.14086 · doi:10.1007/JHEP07(2013)070
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.