×

A new high-order method for the simulation of incompressible wall-bounded turbulent flows. (English) Zbl 1349.76122

Summary: A new high-order method for the accurate simulation of incompressible wall-bounded flows is presented. In the stream- and spanwise directions the discretisation is performed by standard Fourier series, while in the wall-normal direction the method combines high-order collocated compact finite differences with the influence matrix method to calculate the pressure boundary conditions that render the velocity field exactly divergence-free. The main advantage over Chebyshev collocation is that in wall-normal direction, the grid can be chosen freely and thus excessive clustering near the wall is avoided. This can be done while maintaining the high-order approximation as offered by compact finite differences. The discrete Poisson equation is solved in a novel way that avoids any full matrices and thus improves numerical efficiency. Both explicit and implicit discretisations of the viscous terms are described, with the implicit method being more complex, but also having a wider range of applications. The method is validated by simulating two-dimensional Tollmien-Schlichting waves, forced transition in turbulent channel flow, and fully turbulent channel flow at friction Reynolds number \(Re_{\tau} = 395\), and comparing our data with analytical and existing numerical results. In all cases, the results show excellent agreement showing that the method simulates all physical processes correctly.

MSC:

76F65 Direct numerical and large eddy simulation of turbulence
76M20 Finite difference methods applied to problems in fluid mechanics
65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Moin, P.; Mahesh, K., Direct numerical simulation: a tool in turbulence research, Annu. Rev. Fluid Mech., 30, 539-578 (1998) · Zbl 1398.76073
[2] Chorin, A. J., Numerical solution of the Navier-Stokes equations, Math. Comput., 22, 745-762 (1968) · Zbl 0198.50103
[3] Kim, J.; Moin, P., Application of a fractional-step method to incompressible Navier-Stokes equations, J. Comp. Physiol., 59, 308-323 (1985) · Zbl 0582.76038
[4] Perot, J. B., An analysis of the fractional step method, J. Comp. Physiol., 108, 51-58 (1993) · Zbl 0778.76064
[5] Simens, M. P.; Jiménez, J.; Hoyas, S.; Mizuno, Y., A high-resolution code for turbulent boundary layers, J. Comp. Physiol., 228, 4218-4231 (2009) · Zbl 1273.76009
[6] Boersma, B. J., A 6th order staggered compact finite difference method for the incompressible Navier-Stokes and scalar transport equations, J. Comp. Physiol., 230, 4940-4954 (2011) · Zbl 1416.76172
[7] Kim, J.; Moin, P.; Moser, R., Turbulence statistics in fully developed channel flow at low Reynolds number, J. Fluid Mech., 177, 133-166 (1987) · Zbl 0616.76071
[9] Meitz, H. L.; Fasel, H. F., A compact-difference scheme for the Navier-Stokes equations in vorticity-velocity formulation, J. Comp. Physiol., 157, 371-403 (2000) · Zbl 0960.76059
[10] Quadrio, M.; Luchini, P., Direct numerical simulation of the turbulent flow in a pipe with annular cross section, Eur. J. Mech. B, Fluids, 21, 413-427 (2002) · Zbl 1051.76581
[11] Kleiser, L.; Schumann, U., Treatment of incompressibility and boundary conditions on 3-D numerical spectral simulations of plane channel flow, (Proc. 3rd GAMM Conf. Num. Meth. Fluid Mech, vol. 59 (1980)), 165-173 · Zbl 0463.76020
[12] Kleiser, L.; Schumann, U., Spectral simulations of the laminar-turbulent transition process in plane Poiseuille flow, (Voigt, R. G.; Gottlieb, D.; Hussaini, M. Y., Spectral Methods for Partial Differential Equations (1984), SIAM: SIAM Philadelphia), 141-163 · Zbl 0661.76052
[13] Canuto, C.; Hussaini, M. Y.; Quarteroni, A.; Zang, T. A., Spectral Methods. Evolution to Complex Geometries and Applications to Fluid Dynamics, Scientific Computation (2007), Springer-Verlag: Springer-Verlag Berlin, Heidelberg · Zbl 1121.76001
[14] Reuter, J.; Rempfer, D., Analysis of pipe flow transition. Part I. Direct numerical simulation, Theor. Comput. Fluid Dyn., 17, 273-292 (2004) · Zbl 1082.76054
[15] Tuckerman, L., Divergence-free velocity fields in nonperiodic geometries, J. Comp. Physiol., 80, 403-441 (1989) · Zbl 0668.76027
[16] Komminaho, J., Direct numerical simulation of turbulent flow in plane and cylindrical geometries (2000), Royal Institute of Technology: Royal Institute of Technology Stockholm, Sweden, Ph.D. thesis
[17] Jiménez, J., Computing high-Reynolds-number turbulence: will simulations ever replace experiments?, J. Turbul., 4, 022 (2003) · Zbl 1083.76539
[18] Lele, S. K., Compact finite difference schemes with spectral-like resolution, J. Comp. Physiol., 103, 16-42 (1992) · Zbl 0759.65006
[19] Simens, M. P.; Jiménez, J.; Hoyas, S.; Häuet, G.; Vaux, S., A direct numerical simulation code for incompressible turbulent boundary layers (2007), Computational Fluid Dynamics, School of Aeronautics, Universidad Politécnica Madrid: Computational Fluid Dynamics, School of Aeronautics, Universidad Politécnica Madrid Spain, Tech. Rep. ETSIA /MF-071
[20] Akselvoll, K.; Moin, P., An efficient method for temporal integration of the Navier-Stokes equations in confined axisymmetric geometries, J. Comp. Physiol., 125, 454-463 (1995) · Zbl 0847.76043
[21] Gustafsson, B., The convergence rate for difference approximations to mixed initial boundary value problems, Math. Comput., 29, 130 (1975), 396-406 · Zbl 0313.65085
[22] Svärd, M.; Nordström, J., On the order of accuracy for difference approximations of initial-boundary value problems, J. Comp. Physiol., 218, 333-352 (2006) · Zbl 1123.65088
[23] Carpenter, M. H.; Gottlieb, D.; Abarbanel, S., The stability of numerical boundary treatments for compact high-order finite-difference schemes, J. Comp. Physiol., 108, 272-295 (1993) · Zbl 0791.76052
[24] Babucke, A.; Kloker, M. J., Accuracy analysis of finite-difference methods on non-uniform grids (2009), Institut für Aerodynamik und Gasdynamik, Tech. Rep. IB 09-01
[25] Spalart, P. R.; Moser, R. D.; Rogers, M. M., Spectral methods for the Navier-Stokes equations with one infinite and two periodic directions, J. Comp. Physiol., 96, 297-324 (1991) · Zbl 0726.76074
[26] Chevalier, M.; Schlatter, P.; Lundbladh, A.; Henningson, D. S., SIMSON - A pseudo-spectral solver for incompressible boundary layer flows (2007), KTH Mechanics: KTH Mechanics Stockholm, Sweden, Tech. Rep. TRITA-MEK 2007:07
[27] Lenaers, P., A new high-order method for direct numerical simulation of turbulent wall-bounded flows (2014), Royal Institute of Technology: Royal Institute of Technology Stockholm, Sweden, Ph.D. thesis
[28] Frigo, M.; Johnson, S. G., The design and implementation of FFTW3, Proc. IEEE, 93, 2, 216-231 (2005), invited paper, Special Issue on Program Generation, Optimization, and Platform Adaptation
[29] Orlandi, P., Fluid Flow Phenomena, A Numeric Toolkit, 12-17 (2000), Kluwer Academic Publishers
[30] Schmid, P. J.; Henningson, D. S., Stability and Transition in Shear Flows, Appl. Math. Sci., vol. 142 (2001), Springer-Verlag: Springer-Verlag New York · Zbl 0966.76003
[31] Gilbert, N.; Kleiser, L., Near-wall phenomena in transition to turbulence, (Kline, S. J.; Afgan, N. H., Near-Wall Turbulence - 1988 Zoran Zarić Memorial Conference (1990), Hemisphere: Hemisphere New York, USA), 7-27
[32] Schlatter, P.; Stolz, S.; Kleiser, L., LES of transitional flows using the approximate deconvolution model, Int. J. Heat Fluid Flow, 25, 549-558 (2004)
[33] Nishioka, M.; Iida, S.; Ichikawa, Y., An experimental investigation of the stability of plane Poiseuille flow, J. Fluid Mech., 72, 731-751 (1975)
[34] Jeong, J.; Hussain, F., On the identification of a vortex, J. Fluid Mech., 285, 69-94 (1995) · Zbl 0847.76007
[35] Schlatter, P.; Stolz, S.; Kleiser, L., Large-eddy simulation of spatial transition in plane channel flow, J. Turbul., 7, 33, 1-24 (2006) · Zbl 1273.76216
[36] Moser, R. D.; Kim, J.; Mansour, N. N., Direct numerical simulation of turbulent channel flow up to \(Re_\tau = 590\), Phys. Fluids, 11, 943-945 (1999) · Zbl 1147.76463
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.