Iohara, Kenji; Gavarini, Fabio Singular degenerations of Lie supergroups of type \(D(2,1;a)\). (English) Zbl 1423.17011 SIGMA, Symmetry Integrability Geom. Methods Appl. 14, Paper 137, 36 p. (2018). MSC: 17B20 13D10 14A22 PDF BibTeX XML Cite \textit{K. Iohara} and \textit{F. Gavarini}, SIGMA, Symmetry Integrability Geom. Methods Appl. 14, Paper 137, 36 p. (2018; Zbl 1423.17011) Full Text: DOI arXiv OpenURL
Cohl, Howard S.; Dang, Thinh H.; Dunster, T. M. Fundamental solutions and Gegenbauer expansions of Helmholtz operators in Riemannian spaces of constant curvature. (English) Zbl 1406.35106 SIGMA, Symmetry Integrability Geom. Methods Appl. 14, Paper 136, 45 p. (2018). MSC: 35J05 58J05 35A08 33C05 33C45 PDF BibTeX XML Cite \textit{H. S. Cohl} et al., SIGMA, Symmetry Integrability Geom. Methods Appl. 14, Paper 136, 45 p. (2018; Zbl 1406.35106) Full Text: DOI arXiv OpenURL
Jóźwikowski, Michał; Rotkiewicz, Mikołaj Higher-order analogs of Lie algebroids via vector bundle comorphisms. (English) Zbl 1407.58003 SIGMA, Symmetry Integrability Geom. Methods Appl. 14, Paper 135, 46 p. (2018). Reviewer: Marta Macho Stadler (Leioa) MSC: 58A20 58A50 58H05 22A22 70G65 58E30 70H50 PDF BibTeX XML Cite \textit{M. Jóźwikowski} and \textit{M. Rotkiewicz}, SIGMA, Symmetry Integrability Geom. Methods Appl. 14, Paper 135, 46 p. (2018; Zbl 1407.58003) Full Text: DOI arXiv OpenURL
Gonzalez Pagotto, Pablo A product on double cosets of \(B_\infty\). (English) Zbl 1483.20069 SIGMA, Symmetry Integrability Geom. Methods Appl. 14, Paper 134, 18 p. (2018). MSC: 20F36 20M99 20C99 PDF BibTeX XML Cite \textit{P. Gonzalez Pagotto}, SIGMA, Symmetry Integrability Geom. Methods Appl. 14, Paper 134, 18 p. (2018; Zbl 1483.20069) Full Text: DOI arXiv OpenURL
Blaschke, Daniel N.; Gieres, François; Hohenegger, Stefan; Schweda, Manfred; Wohlgenannt, Michael Field theory with coordinate dependent noncommutativity. (English) Zbl 1405.81155 SIGMA, Symmetry Integrability Geom. Methods Appl. 14, Paper 133, 35 p. (2018). MSC: 81T75 70H33 81T13 51P05 70S10 53D55 81T20 PDF BibTeX XML Cite \textit{D. N. Blaschke} et al., SIGMA, Symmetry Integrability Geom. Methods Appl. 14, Paper 133, 35 p. (2018; Zbl 1405.81155) Full Text: DOI arXiv OpenURL
Felder, Giovanni; Rimányi, Richárd; Varchenko, Alexander Elliptic dynamical quantum groups and equivariant elliptic cohomology. (English) Zbl 1423.17015 SIGMA, Symmetry Integrability Geom. Methods Appl. 14, Paper 132, 41 p. (2018). MSC: 17B37 55N34 32C35 55R40 PDF BibTeX XML Cite \textit{G. Felder} et al., SIGMA, Symmetry Integrability Geom. Methods Appl. 14, Paper 132, 41 p. (2018; Zbl 1423.17015) Full Text: DOI arXiv OpenURL
Volkmer, Hans Eigenvalue problems for Lamé’s differential equation. (English) Zbl 1409.34077 SIGMA, Symmetry Integrability Geom. Methods Appl. 14, Paper 131, 21 p. (2018). MSC: 34M03 34B30 34L15 PDF BibTeX XML Cite \textit{H. Volkmer}, SIGMA, Symmetry Integrability Geom. Methods Appl. 14, Paper 131, 21 p. (2018; Zbl 1409.34077) Full Text: DOI arXiv OpenURL
Krutov, Andrey; Lebedev, Alexei On gradings modulo 2 of simple Lie algebras in characteristic 2. (English) Zbl 1423.17019 SIGMA, Symmetry Integrability Geom. Methods Appl. 14, Paper 130, 27 p. (2018). MSC: 17B50 17B20 17B70 PDF BibTeX XML Cite \textit{A. Krutov} and \textit{A. Lebedev}, SIGMA, Symmetry Integrability Geom. Methods Appl. 14, Paper 130, 27 p. (2018; Zbl 1423.17019) Full Text: DOI arXiv OpenURL
Rayan, Steven Aspects of the topology and combinatorics of Higgs bundle moduli spaces. (English) Zbl 1408.14044 SIGMA, Symmetry Integrability Geom. Methods Appl. 14, Paper 129, 18 p. (2018). Reviewer: Nikita Nikolaev (Genéve) MSC: 14D20 46M20 57N65 05A19 PDF BibTeX XML Cite \textit{S. Rayan}, SIGMA, Symmetry Integrability Geom. Methods Appl. 14, Paper 129, 18 p. (2018; Zbl 1408.14044) Full Text: DOI arXiv OpenURL
Schätz, Florian; Zambon, Marco Deformations of pre-symplectic structures: a Dirac geometry approach. (English) Zbl 1434.53089 SIGMA, Symmetry Integrability Geom. Methods Appl. 14, Paper 128, 12 p. (2018). MSC: 53D17 17B70 58H15 PDF BibTeX XML Cite \textit{F. Schätz} and \textit{M. Zambon}, SIGMA, Symmetry Integrability Geom. Methods Appl. 14, Paper 128, 12 p. (2018; Zbl 1434.53089) Full Text: DOI arXiv OpenURL
Hoskins, Victoria Parallels between moduli of quiver representations and vector bundles over curves. (English) Zbl 1460.14030 SIGMA, Symmetry Integrability Geom. Methods Appl. 14, Paper 127, 46 p. (2018). Reviewer: Simone Marchesi (Barcelona) MSC: 14D20 14L24 16G20 14H60 PDF BibTeX XML Cite \textit{V. Hoskins}, SIGMA, Symmetry Integrability Geom. Methods Appl. 14, Paper 127, 46 p. (2018; Zbl 1460.14030) Full Text: DOI arXiv OpenURL
Kenfack Nangho, Maurice; Jordaan, Kerstin Structure relations of classical orthogonal polynomials in the quadratic and \(q\)-quadratic variable. (English) Zbl 1405.33026 SIGMA, Symmetry Integrability Geom. Methods Appl. 14, Paper 126, 26 p. (2018). MSC: 33D45 33C45 42C05 PDF BibTeX XML Cite \textit{M. Kenfack Nangho} and \textit{K. Jordaan}, SIGMA, Symmetry Integrability Geom. Methods Appl. 14, Paper 126, 26 p. (2018; Zbl 1405.33026) Full Text: DOI arXiv OpenURL
Miller, Peter D. On the increasing tritronquée solutions of the Painlevé-II equation. (English) Zbl 1408.34071 SIGMA, Symmetry Integrability Geom. Methods Appl. 14, Paper 125, 38 p. (2018). Reviewer: Dmitry Artamonov (Moskva) MSC: 34M55 33E17 34M40 PDF BibTeX XML Cite \textit{P. D. Miller}, SIGMA, Symmetry Integrability Geom. Methods Appl. 14, Paper 125, 38 p. (2018; Zbl 1408.34071) Full Text: DOI arXiv OpenURL
Frejlich, Pedro Morita invariance of intrinsic characteristic classes of Lie algebroids. (English) Zbl 1407.53090 SIGMA, Symmetry Integrability Geom. Methods Appl. 14, Paper 124, 12 p. (2018). Reviewer: Andrew Bruce (Warszawa) MSC: 53D17 57R20 PDF BibTeX XML Cite \textit{P. Frejlich}, SIGMA, Symmetry Integrability Geom. Methods Appl. 14, Paper 124, 12 p. (2018; Zbl 1407.53090) Full Text: DOI arXiv OpenURL
Gavrylenko, Pavlo; Iorgov, Nikolai; Lisovyy, Oleg On solutions of the Fuji-Suzuki-Tsuda system. (English) Zbl 1412.34243 SIGMA, Symmetry Integrability Geom. Methods Appl. 14, Paper 123, 27 p. (2018). Reviewer: Mykola Grygorenko (Kyïv) MSC: 34M55 34M56 33E17 PDF BibTeX XML Cite \textit{P. Gavrylenko} et al., SIGMA, Symmetry Integrability Geom. Methods Appl. 14, Paper 123, 27 p. (2018; Zbl 1412.34243) Full Text: DOI arXiv OpenURL
Guillot, Adolfo Quadratic differential equations in three variables without multivalued solutions. I. (English) Zbl 1407.34124 SIGMA, Symmetry Integrability Geom. Methods Appl. 14, Paper 122, 46 p. (2018). Reviewer: Mykola Grygorenko (Kyïv) MSC: 34M99 34M55 34M35 PDF BibTeX XML Cite \textit{A. Guillot}, SIGMA, Symmetry Integrability Geom. Methods Appl. 14, Paper 122, 46 p. (2018; Zbl 1407.34124) Full Text: DOI arXiv OpenURL
Magadov, Kamil Yu.; Spiridonov, Vyacheslav P. Matrix Bailey lemma and the star-triangle relation. (English) Zbl 1405.33027 SIGMA, Symmetry Integrability Geom. Methods Appl. 14, Paper 121, 13 p. (2018). MSC: 33D60 33E20 PDF BibTeX XML Cite \textit{K. Yu. Magadov} and \textit{V. P. Spiridonov}, SIGMA, Symmetry Integrability Geom. Methods Appl. 14, Paper 121, 13 p. (2018; Zbl 1405.33027) Full Text: DOI arXiv OpenURL
Buryak, Alexandr; Rossi, Paolo Simple Lax description of the ILW hierarchy. (English) Zbl 1407.37101 SIGMA, Symmetry Integrability Geom. Methods Appl. 14, Paper 120, 7 p. (2018). MSC: 37K10 37K15 PDF BibTeX XML Cite \textit{A. Buryak} and \textit{P. Rossi}, SIGMA, Symmetry Integrability Geom. Methods Appl. 14, Paper 120, 7 p. (2018; Zbl 1407.37101) Full Text: DOI arXiv OpenURL
Aydagulov, Rustem R.; Minakov, Alexander A. Initial-boundary value problem for stimulated Raman scattering model: solvability of Whitham type system of equations arising in long-time asymptotic analysis. (English) Zbl 1407.37105 SIGMA, Symmetry Integrability Geom. Methods Appl. 14, Paper 119, 19 p. (2018). MSC: 37K40 37K15 35Q15 PDF BibTeX XML Cite \textit{R. R. Aydagulov} and \textit{A. A. Minakov}, SIGMA, Symmetry Integrability Geom. Methods Appl. 14, Paper 119, 19 p. (2018; Zbl 1407.37105) Full Text: DOI arXiv OpenURL
Li, Muxi Integral regulators for higher Chow complexes. (English) Zbl 1423.14038 SIGMA, Symmetry Integrability Geom. Methods Appl. 14, Paper 118, 12 p. (2018). MSC: 14C15 14C25 19F27 PDF BibTeX XML Cite \textit{M. Li}, SIGMA, Symmetry Integrability Geom. Methods Appl. 14, Paper 118, 12 p. (2018; Zbl 1423.14038) Full Text: DOI arXiv OpenURL
Costin, Rodica D. Truncated solutions of Painlevé equation \({\mathrm P}_{\mathrm V}\). (English) Zbl 1410.34267 SIGMA, Symmetry Integrability Geom. Methods Appl. 14, Paper 117, 14 p. (2018). Reviewer: Vladimir P. Kostov (Nice) MSC: 34M55 34M25 34M30 PDF BibTeX XML Cite \textit{R. D. Costin}, SIGMA, Symmetry Integrability Geom. Methods Appl. 14, Paper 117, 14 p. (2018; Zbl 1410.34267) Full Text: DOI arXiv OpenURL
Keast, Ryan; Kerr, Matt Normal functions over locally symmetric varieties. (English) Zbl 1451.14028 SIGMA, Symmetry Integrability Geom. Methods Appl. 14, Paper 116, 18 p. (2018). MSC: 14D07 14C25 14M17 17B45 32M15 32G20 PDF BibTeX XML Cite \textit{R. Keast} and \textit{M. Kerr}, SIGMA, Symmetry Integrability Geom. Methods Appl. 14, Paper 116, 18 p. (2018; Zbl 1451.14028) Full Text: DOI arXiv OpenURL
Dunkl, Charles F. The smallest singular values and vector-valued Jack polynomials. (English) Zbl 1401.33010 SIGMA, Symmetry Integrability Geom. Methods Appl. 14, Paper 115, 20 p. (2018). MSC: 33C52 05E10 05E05 20F55 PDF BibTeX XML Cite \textit{C. F. Dunkl}, SIGMA, Symmetry Integrability Geom. Methods Appl. 14, Paper 115, 20 p. (2018; Zbl 1401.33010) Full Text: DOI arXiv OpenURL
Carnahan, Scott; Komuro, Takahiro; Urano, Satoru Characterizing moonshine functions by vertex-operator-algebraic conditions. (English) Zbl 1440.11058 SIGMA, Symmetry Integrability Geom. Methods Appl. 14, Paper 114, 8 p. (2018). MSC: 11F22 17B69 PDF BibTeX XML Cite \textit{S. Carnahan} et al., SIGMA, Symmetry Integrability Geom. Methods Appl. 14, Paper 114, 8 p. (2018; Zbl 1440.11058) Full Text: DOI arXiv OpenURL
Shimomura, Shun Three-parameter solutions of the PV Schlesinger-type equation near the point at infinity and the monodromy data. (English) Zbl 1402.34097 SIGMA, Symmetry Integrability Geom. Methods Appl. 14, Paper 113, 50 p. (2018). MSC: 34M55 34M56 34M40 34M35 34E10 PDF BibTeX XML Cite \textit{S. Shimomura}, SIGMA, Symmetry Integrability Geom. Methods Appl. 14, Paper 113, 50 p. (2018; Zbl 1402.34097) Full Text: DOI arXiv OpenURL
Bonfim, Rafaela N.; Guella, Jean C.; Menegatto, Valdir A. Strictly positive definite functions on compact two-point homogeneous spaces: the product alternative. (English) Zbl 1403.43004 SIGMA, Symmetry Integrability Geom. Methods Appl. 14, Paper 112, 14 p. (2018). MSC: 43A35 33C45 42A82 42C10 PDF BibTeX XML Cite \textit{R. N. Bonfim} et al., SIGMA, Symmetry Integrability Geom. Methods Appl. 14, Paper 112, 14 p. (2018; Zbl 1403.43004) Full Text: DOI arXiv OpenURL
Komyo, Arata The moduli spaces of parabolic connections with a quadratic differential and isomonodromic deformations. (English) Zbl 1402.14011 SIGMA, Symmetry Integrability Geom. Methods Appl. 14, Paper 111, 22 p. (2018). Reviewer: Vladimir P. Kostov (Nice) MSC: 14D20 34M56 PDF BibTeX XML Cite \textit{A. Komyo}, SIGMA, Symmetry Integrability Geom. Methods Appl. 14, Paper 111, 22 p. (2018; Zbl 1402.14011) Full Text: DOI arXiv OpenURL
Stienstra, Jan Zhegalkin zebra motives digital recordings of mirror symmetry. (English) Zbl 1402.52021 SIGMA, Symmetry Integrability Geom. Methods Appl. 14, Paper 110, 29 p. (2018). MSC: 52C20 82B20 14M25 PDF BibTeX XML Cite \textit{J. Stienstra}, SIGMA, Symmetry Integrability Geom. Methods Appl. 14, Paper 110, 29 p. (2018; Zbl 1402.52021) Full Text: DOI arXiv OpenURL
Berg, Christian; Szwarc, Ryszard Inverse of infinite Hankel moment matrices. (English) Zbl 1412.42064 SIGMA, Symmetry Integrability Geom. Methods Appl. 14, Paper 109, 48 p. (2018). Reviewer: Florian-Horia Vasilescu (Villeneuve d’Ascq) MSC: 42C05 44A60 47B36 33D45 60J80 PDF BibTeX XML Cite \textit{C. Berg} and \textit{R. Szwarc}, SIGMA, Symmetry Integrability Geom. Methods Appl. 14, Paper 109, 48 p. (2018; Zbl 1412.42064) Full Text: DOI arXiv OpenURL
Raum, Martin Hyper-algebras of vector-valued modular forms. (English) Zbl 1456.11080 SIGMA, Symmetry Integrability Geom. Methods Appl. 14, Paper 108, 17 p. (2018). MSC: 11F46 11F60 11F70 PDF BibTeX XML Cite \textit{M. Raum}, SIGMA, Symmetry Integrability Geom. Methods Appl. 14, Paper 108, 17 p. (2018; Zbl 1456.11080) Full Text: DOI arXiv OpenURL
Deaño, Alfredo Large \(z\) asymptotics for special function solutions of Painlevé II in the complex plane. (English) Zbl 1402.34093 SIGMA, Symmetry Integrability Geom. Methods Appl. 14, Paper 107, 19 p. (2018). MSC: 34M55 34E05 33C10 30E10 33E17 PDF BibTeX XML Cite \textit{A. Deaño}, SIGMA, Symmetry Integrability Geom. Methods Appl. 14, Paper 107, 19 p. (2018; Zbl 1402.34093) Full Text: DOI arXiv OpenURL
Novokshenov, Victor Yu. Generalized Hermite polynomials and monodromy-free Schrödinger operators. (English) Zbl 1403.35091 SIGMA, Symmetry Integrability Geom. Methods Appl. 14, Paper 106, 13 p. (2018). MSC: 35J10 30D30 34M35 34M55 PDF BibTeX XML Cite \textit{V. Yu. Novokshenov}, SIGMA, Symmetry Integrability Geom. Methods Appl. 14, Paper 106, 13 p. (2018; Zbl 1403.35091) Full Text: DOI arXiv OpenURL
Díaz-Marín, Homero G.; Oeckl, Robert Quantum abelian Yang-Mills theory on Riemannian manifolds with boundary. (English) Zbl 1454.81142 SIGMA, Symmetry Integrability Geom. Methods Appl. 14, Paper 105, 31 p. (2018). MSC: 81T13 70S15 81T20 81T70 53D50 58E15 58E30 PDF BibTeX XML Cite \textit{H. G. Díaz-Marín} and \textit{R. Oeckl}, SIGMA, Symmetry Integrability Geom. Methods Appl. 14, Paper 105, 31 p. (2018; Zbl 1454.81142) Full Text: DOI arXiv OpenURL
Cafasso, Mattia; du Crest de Villeneuve, Ann; Yang, Di Drinfeld-Sokolov hierarchies, tau functions, and generalized Schur polynomials. (English) Zbl 1408.37124 SIGMA, Symmetry Integrability Geom. Methods Appl. 14, Paper 104, 17 p. (2018). MSC: 37K30 37K10 17B80 PDF BibTeX XML Cite \textit{M. Cafasso} et al., SIGMA, Symmetry Integrability Geom. Methods Appl. 14, Paper 104, 17 p. (2018; Zbl 1408.37124) Full Text: DOI arXiv OpenURL
Salisbury, Ben; Scrimshaw, Travis Virtual crystals and Nakajima monomials. (English) Zbl 1400.05270 SIGMA, Symmetry Integrability Geom. Methods Appl. 14, Paper 103, 19 p. (2018). MSC: 05E10 17B37 PDF BibTeX XML Cite \textit{B. Salisbury} and \textit{T. Scrimshaw}, SIGMA, Symmetry Integrability Geom. Methods Appl. 14, Paper 103, 19 p. (2018; Zbl 1400.05270) Full Text: DOI arXiv OpenURL
Anema, Ane S. I.; Top, Jaap; Tuijp, Anne Hesse pencils and 3-torsion structures. (English) Zbl 1403.14030 SIGMA, Symmetry Integrability Geom. Methods Appl. 14, Paper 102, 13 p. (2018). Reviewer: Andrea Bandini (Parma) MSC: 14D10 14G99 PDF BibTeX XML Cite \textit{A. S. I. Anema} et al., SIGMA, Symmetry Integrability Geom. Methods Appl. 14, Paper 102, 13 p. (2018; Zbl 1403.14030) Full Text: DOI arXiv OpenURL
Hoshino, Ayumu; Shiraishi, Jun’ichi Macdonald polynomials of type \(C_n\) with one-column diagrams and deformed Catalan numbers. (English) Zbl 1401.33014 SIGMA, Symmetry Integrability Geom. Methods Appl. 14, Paper 101, 33 p. (2018). MSC: 33D52 33D45 PDF BibTeX XML Cite \textit{A. Hoshino} and \textit{J. Shiraishi}, SIGMA, Symmetry Integrability Geom. Methods Appl. 14, Paper 101, 33 p. (2018; Zbl 1401.33014) Full Text: DOI arXiv OpenURL
Sambale, Benjamin Morita equivalent blocks of symmetric groups. (English) Zbl 1402.20024 SIGMA, Symmetry Integrability Geom. Methods Appl. 14, Paper 100, 8 p. (2018). MSC: 20C30 20C08 20C20 PDF BibTeX XML Cite \textit{B. Sambale}, SIGMA, Symmetry Integrability Geom. Methods Appl. 14, Paper 100, 8 p. (2018; Zbl 1402.20024) Full Text: DOI arXiv OpenURL
Acosta-Humánez, Manuel F.; Acosta-Humánez, Primitivo B.; Tuirán, Erick Generalized Lennard-Jones potentials, SUSYQM and differential Galois theory. (English) Zbl 1430.81027 SIGMA, Symmetry Integrability Geom. Methods Appl. 14, Paper 099, 21 p. (2018). MSC: 81Q05 12H05 81V55 PDF BibTeX XML Cite \textit{M. F. Acosta-Humánez} et al., SIGMA, Symmetry Integrability Geom. Methods Appl. 14, Paper 099, 21 p. (2018; Zbl 1430.81027) Full Text: DOI arXiv OpenURL
Kobyzev, Ivan; Shapiro, Ilya Anti-Yetter-Drinfeld modules for quasi-Hopf algebras. (English) Zbl 1468.18016 SIGMA, Symmetry Integrability Geom. Methods Appl. 14, Paper 098, 10 p. (2018). MSC: 18M05 18E05 19D55 16T05 PDF BibTeX XML Cite \textit{I. Kobyzev} and \textit{I. Shapiro}, SIGMA, Symmetry Integrability Geom. Methods Appl. 14, Paper 098, 10 p. (2018; Zbl 1468.18016) Full Text: DOI arXiv OpenURL
Goto, Yasuhiro A note on the formal groups of weighted Delsarte threefolds. (English) Zbl 1423.14258 SIGMA, Symmetry Integrability Geom. Methods Appl. 14, Paper 097, 12 p. (2018). MSC: 14L05 14G17 14J32 PDF BibTeX XML Cite \textit{Y. Goto}, SIGMA, Symmetry Integrability Geom. Methods Appl. 14, Paper 097, 12 p. (2018; Zbl 1423.14258) Full Text: DOI arXiv OpenURL
Froehlich, Sara The variational bi-complex for systems of semi-linear hyperbolic PDEs in three variables. (English) Zbl 1402.35179 SIGMA, Symmetry Integrability Geom. Methods Appl. 14, Paper 096, 49 p. (2018). MSC: 35L71 35L65 35A30 58A15 PDF BibTeX XML Cite \textit{S. Froehlich}, SIGMA, Symmetry Integrability Geom. Methods Appl. 14, Paper 096, 49 p. (2018; Zbl 1402.35179) Full Text: DOI arXiv OpenURL
Xia, Xiaoyue Tronquée solutions of the third and fourth Painlevé equations. (English) Zbl 1402.34098 SIGMA, Symmetry Integrability Geom. Methods Appl. 14, Paper 095, 28 p. (2018). Reviewer: Dmitry Artamonov (Moskva) MSC: 34M55 34M25 34M40 PDF BibTeX XML Cite \textit{X. Xia}, SIGMA, Symmetry Integrability Geom. Methods Appl. 14, Paper 095, 28 p. (2018; Zbl 1402.34098) Full Text: DOI arXiv OpenURL
Bettadapura, Kowshik Higher obstructions of complex supermanifolds. (English) Zbl 1400.32004 SIGMA, Symmetry Integrability Geom. Methods Appl. 14, Paper 094, 12 p. (2018). MSC: 32C11 58A50 PDF BibTeX XML Cite \textit{K. Bettadapura}, SIGMA, Symmetry Integrability Geom. Methods Appl. 14, Paper 094, 12 p. (2018; Zbl 1400.32004) Full Text: DOI arXiv OpenURL
Dubrovin, Boris; Kapaev, Andrei A Riemann-Hilbert approach to the Heun equation. (English) Zbl 1404.34100 SIGMA, Symmetry Integrability Geom. Methods Appl. 14, Paper 093, 24 p. (2018). Reviewer: Pascal Remy (Carrières-sur-Seine) MSC: 34M03 34M05 34M35 34M55 57M50 PDF BibTeX XML Cite \textit{B. Dubrovin} and \textit{A. Kapaev}, SIGMA, Symmetry Integrability Geom. Methods Appl. 14, Paper 093, 24 p. (2018; Zbl 1404.34100) Full Text: DOI arXiv OpenURL
Marchesiello, Antonella; Šnobl, Libor An infinite family of maximally superintegrable systems in a magnetic field with higher order integrals. (English) Zbl 1401.37064 SIGMA, Symmetry Integrability Geom. Methods Appl. 14, Paper 092, 11 p. (2018). MSC: 37J35 78A25 70H06 PDF BibTeX XML Cite \textit{A. Marchesiello} and \textit{L. Šnobl}, SIGMA, Symmetry Integrability Geom. Methods Appl. 14, Paper 092, 11 p. (2018; Zbl 1401.37064) Full Text: DOI arXiv OpenURL
Bertola, Marco; Elias Rebelo, José Gustavo; Grava, Tamara Painlevé IV critical asymptotics for orthogonal polynomials in the complex plane. (English) Zbl 1400.33008 SIGMA, Symmetry Integrability Geom. Methods Appl. 14, Paper 091, 34 p. (2018). MSC: 33C15 34M55 PDF BibTeX XML Cite \textit{M. Bertola} et al., SIGMA, Symmetry Integrability Geom. Methods Appl. 14, Paper 091, 34 p. (2018; Zbl 1400.33008) Full Text: DOI arXiv OpenURL
Li, Wen-Ching Winnie; Long, Ling; Tu, Fang-Ting Computing special \(L\)-values of certain modular forms with complex multiplication. (English) Zbl 1456.11057 SIGMA, Symmetry Integrability Geom. Methods Appl. 14, Paper 090, 32 p. (2018). Reviewer: Noriko Yui (Kingston) MSC: 11F11 11F67 11M36 33C05 PDF BibTeX XML Cite \textit{W.-C. W. Li} et al., SIGMA, Symmetry Integrability Geom. Methods Appl. 14, Paper 090, 32 p. (2018; Zbl 1456.11057) Full Text: DOI arXiv OpenURL
Saunders, David On Lagrangians with reduced-order Euler-Lagrange equations. (English) Zbl 1400.58005 SIGMA, Symmetry Integrability Geom. Methods Appl. 14, Paper 089, 13 p. (2018). MSC: 58E30 PDF BibTeX XML Cite \textit{D. Saunders}, SIGMA, Symmetry Integrability Geom. Methods Appl. 14, Paper 089, 13 p. (2018; Zbl 1400.58005) Full Text: DOI arXiv OpenURL
Filipuk, Galina; Van Assche, Walter Discrete orthogonal polynomials with hypergeometric weights and Painlevé VI. (English) Zbl 1400.33016 SIGMA, Symmetry Integrability Geom. Methods Appl. 14, Paper 088, 19 p. (2018). MSC: 33C45 33E17 PDF BibTeX XML Cite \textit{G. Filipuk} and \textit{W. Van Assche}, SIGMA, Symmetry Integrability Geom. Methods Appl. 14, Paper 088, 19 p. (2018; Zbl 1400.33016) Full Text: DOI arXiv OpenURL
Guzzetti, Davide Notes on non-generic isomonodromy deformations. (English) Zbl 1411.34117 SIGMA, Symmetry Integrability Geom. Methods Appl. 14, Paper 087, 34 p. (2018). Reviewer: Tsvetana Stoyanova (Sofia) MSC: 34M56 34M35 34M40 PDF BibTeX XML Cite \textit{D. Guzzetti}, SIGMA, Symmetry Integrability Geom. Methods Appl. 14, Paper 087, 34 p. (2018; Zbl 1411.34117) Full Text: DOI arXiv OpenURL
Zudilin, Wadim A hypergeometric version of the modularity of rigid Calabi-Yau manifolds. (English) Zbl 1456.11073 SIGMA, Symmetry Integrability Geom. Methods Appl. 14, Paper 086, 16 p. (2018). Reviewer: Noriko Yui (Kingston) MSC: 11F33 11T24 14G10 14J32 14J33 33C20 PDF BibTeX XML Cite \textit{W. Zudilin}, SIGMA, Symmetry Integrability Geom. Methods Appl. 14, Paper 086, 16 p. (2018; Zbl 1456.11073) Full Text: DOI arXiv OpenURL
Demichel, Yann Renormalization of the Hutchinson operator. (English) Zbl 1396.28010 SIGMA, Symmetry Integrability Geom. Methods Appl. 14, Paper 085, 27 p. (2018). MSC: 28A80 37C25 37C70 47H10 PDF BibTeX XML Cite \textit{Y. Demichel}, SIGMA, Symmetry Integrability Geom. Methods Appl. 14, Paper 085, 27 p. (2018; Zbl 1396.28010) Full Text: DOI arXiv OpenURL
Hohloch, Sonja; Sabatini, Silvia; Sepe, Daniele; Symington, Margaret Faithful semitoric systems. (English) Zbl 1407.37094 SIGMA, Symmetry Integrability Geom. Methods Appl. 14, Paper 084, 66 p. (2018). MSC: 37J35 37J05 53D20 70H06 PDF BibTeX XML Cite \textit{S. Hohloch} et al., SIGMA, Symmetry Integrability Geom. Methods Appl. 14, Paper 084, 66 p. (2018; Zbl 1407.37094) Full Text: DOI arXiv OpenURL
Beatson, Rick K.; zu Castell, Wolfgang Thinplate splines on the sphere. (English) Zbl 1400.41009 SIGMA, Symmetry Integrability Geom. Methods Appl. 14, Paper 083, 22 p. (2018). MSC: 41A15 33C45 42A82 PDF BibTeX XML Cite \textit{R. K. Beatson} and \textit{W. zu Castell}, SIGMA, Symmetry Integrability Geom. Methods Appl. 14, Paper 083, 22 p. (2018; Zbl 1400.41009) Full Text: DOI arXiv OpenURL
Kotlyarov, Vladimir P. A matrix Baker-Akhiezer function associated with the Maxwell-Bloch equations and their finite-gap solutions. (English) Zbl 1406.35381 SIGMA, Symmetry Integrability Geom. Methods Appl. 14, Paper 082, 27 p. (2018). Reviewer: Eugene Postnikov (Kursk) MSC: 35Q60 34L25 34M50 35F31 35Q15 35Q51 78A60 PDF BibTeX XML Cite \textit{V. P. Kotlyarov}, SIGMA, Symmetry Integrability Geom. Methods Appl. 14, Paper 082, 27 p. (2018; Zbl 1406.35381) Full Text: DOI arXiv OpenURL
Fino, Anna; Kath, Ines Local type I metrics with holonomy in \(\mathrm{G}_2^\ast\). (English) Zbl 1398.53058 SIGMA, Symmetry Integrability Geom. Methods Appl. 14, Paper 081, 28 p. (2018). Reviewer: Iakovos Androulidakis (Athína) MSC: 53C29 53C50 53C10 PDF BibTeX XML Cite \textit{A. Fino} and \textit{I. Kath}, SIGMA, Symmetry Integrability Geom. Methods Appl. 14, Paper 081, 28 p. (2018; Zbl 1398.53058) Full Text: DOI arXiv OpenURL
Makhmali, Omid Differential geometric aspects of causal structures. (English) Zbl 1400.53017 SIGMA, Symmetry Integrability Geom. Methods Appl. 14, Paper 080, 50 p. (2018). Reviewer: Weihuan Chen (Beijing) MSC: 53A55 58A15 58A30 53A30 53C28 PDF BibTeX XML Cite \textit{O. Makhmali}, SIGMA, Symmetry Integrability Geom. Methods Appl. 14, Paper 080, 50 p. (2018; Zbl 1400.53017) Full Text: DOI arXiv OpenURL
Huang, Leonard Metrized quantum vector bundles over quantum tori built from Riemannian metrics and Rosenberg’s Levi-Civita connections. (English) Zbl 1404.46064 SIGMA, Symmetry Integrability Geom. Methods Appl. 14, Paper 079, 21 p. (2018). MSC: 46L87 58B34 46L08 46L57 37A55 PDF BibTeX XML Cite \textit{L. Huang}, SIGMA, Symmetry Integrability Geom. Methods Appl. 14, Paper 079, 21 p. (2018; Zbl 1404.46064) Full Text: DOI arXiv OpenURL
Grinberg, Darij \(t\)-unique reductions for Mészáros’s subdivision algebra. (English) Zbl 1395.05191 SIGMA, Symmetry Integrability Geom. Methods Appl. 14, Paper 078, 34 p. (2018). MSC: 05E15 05E40 PDF BibTeX XML Cite \textit{D. Grinberg}, SIGMA, Symmetry Integrability Geom. Methods Appl. 14, Paper 078, 34 p. (2018; Zbl 1395.05191) Full Text: DOI arXiv OpenURL
Ito, Masahiko; Noumi, Masatoshi Connection formula for the Jackson integral of type \(A_n\) and elliptic Lagrange interpolation. (English) Zbl 1396.33035 SIGMA, Symmetry Integrability Geom. Methods Appl. 14, Paper 077, 42 p. (2018). MSC: 33D52 39A13 PDF BibTeX XML Cite \textit{M. Ito} and \textit{M. Noumi}, SIGMA, Symmetry Integrability Geom. Methods Appl. 14, Paper 077, 42 p. (2018; Zbl 1396.33035) Full Text: DOI arXiv OpenURL
Cafasso, Mattia; de la Iglesia, Manuel D. The Toda and Painlevé systems associated with semiclassical matrix-valued orthogonal polynomials of Laguerre type. (English) Zbl 1396.34056 SIGMA, Symmetry Integrability Geom. Methods Appl. 14, Paper 076, 17 p. (2018). Reviewer: Vladimir P. Kostov (Nice) MSC: 34M56 42C05 34M50 PDF BibTeX XML Cite \textit{M. Cafasso} and \textit{M. D. de la Iglesia}, SIGMA, Symmetry Integrability Geom. Methods Appl. 14, Paper 076, 17 p. (2018; Zbl 1396.34056) Full Text: DOI arXiv OpenURL
Dzhamay, Anton; Takenawa, Tomoyuki On some applications of Sakai’s geometric theory of discrete Painlevé equations. (English) Zbl 1396.37068 SIGMA, Symmetry Integrability Geom. Methods Appl. 14, Paper 075, 20 p. (2018). MSC: 37K10 37J35 37K20 34M55 34M56 PDF BibTeX XML Cite \textit{A. Dzhamay} and \textit{T. Takenawa}, SIGMA, Symmetry Integrability Geom. Methods Appl. 14, Paper 075, 20 p. (2018; Zbl 1396.37068) Full Text: DOI arXiv OpenURL
Bernatska, Julia; Leykin, Dmitry On regularization of second kind integrals. (English) Zbl 1398.30041 SIGMA, Symmetry Integrability Geom. Methods Appl. 14, Paper 074, 28 p. (2018). MSC: 30H99 14H55 PDF BibTeX XML Cite \textit{J. Bernatska} and \textit{D. Leykin}, SIGMA, Symmetry Integrability Geom. Methods Appl. 14, Paper 074, 28 p. (2018; Zbl 1398.30041) Full Text: DOI arXiv OpenURL
Gil, Amparo; Segura, Javier; Temme, Nico M. Asymptotic expansions of Jacobi polynomials for large values of \(\beta\) and of their zeros. (English) Zbl 1393.33011 SIGMA, Symmetry Integrability Geom. Methods Appl. 14, Paper 073, 9 p. (2018). MSC: 33C45 41A60 65D20 PDF BibTeX XML Cite \textit{A. Gil} et al., SIGMA, Symmetry Integrability Geom. Methods Appl. 14, Paper 073, 9 p. (2018; Zbl 1393.33011) Full Text: DOI arXiv OpenURL
Ismail, Mourad E. H.; Koelink, Erik; Román, Pablo Generalized Burchnall-type identities for orthogonal polynomials and expansions. (English) Zbl 1393.33013 SIGMA, Symmetry Integrability Geom. Methods Appl. 14, Paper 072, 24 p. (2018). MSC: 33C45 33D45 42C05 37K10 PDF BibTeX XML Cite \textit{M. E. H. Ismail} et al., SIGMA, Symmetry Integrability Geom. Methods Appl. 14, Paper 072, 24 p. (2018; Zbl 1393.33013) Full Text: DOI arXiv OpenURL
Candelori, Luca The Chevalley-Weil formula for orbifold curves. (English) Zbl 1400.14079 SIGMA, Symmetry Integrability Geom. Methods Appl. 14, Paper 071, 17 p. (2018). Reviewer: Maria Montanucci (Umbertide) MSC: 14H30 14H37 14H45 PDF BibTeX XML Cite \textit{L. Candelori}, SIGMA, Symmetry Integrability Geom. Methods Appl. 14, Paper 071, 17 p. (2018; Zbl 1400.14079) Full Text: DOI arXiv OpenURL
Raźny, Paweł The solution of Hilbert’s fifth problem for transitive groupoids. (English) Zbl 1394.22004 SIGMA, Symmetry Integrability Geom. Methods Appl. 14, Paper 070, 11 p. (2018). Reviewer: Watchareepan Atiponrat (Chiang Mai) MSC: 22A22 PDF BibTeX XML Cite \textit{P. Raźny}, SIGMA, Symmetry Integrability Geom. Methods Appl. 14, Paper 070, 11 p. (2018; Zbl 1394.22004) Full Text: DOI arXiv OpenURL
Zinn-Justin, Paul Loop models and \(K\)-theory. (English) Zbl 1393.82003 SIGMA, Symmetry Integrability Geom. Methods Appl. 14, Paper 069, 48 p. (2018). MSC: 82B23 19M05 14M15 14N15 14C35 14J81 81R10 PDF BibTeX XML Cite \textit{P. Zinn-Justin}, SIGMA, Symmetry Integrability Geom. Methods Appl. 14, Paper 069, 48 p. (2018; Zbl 1393.82003) Full Text: DOI arXiv OpenURL
Klein, Christian; Stoilov, Nikola Numerical approach to Painlevé transcendents on unbounded domains. (English) Zbl 1397.34157 SIGMA, Symmetry Integrability Geom. Methods Appl. 14, Paper 068, 10 p. (2018). MSC: 34M55 65L99 PDF BibTeX XML Cite \textit{C. Klein} and \textit{N. Stoilov}, SIGMA, Symmetry Integrability Geom. Methods Appl. 14, Paper 068, 10 p. (2018; Zbl 1397.34157) Full Text: DOI arXiv OpenURL
Kuniba, Atsuo Tetrahedron equation and quantum \(R\) matrices for \(q\)-oscillator representations mixing particles and holes. (English) Zbl 1395.81127 SIGMA, Symmetry Integrability Geom. Methods Appl. 14, Paper 067, 23 p. (2018). MSC: 81R50 17B37 16T25 PDF BibTeX XML Cite \textit{A. Kuniba}, SIGMA, Symmetry Integrability Geom. Methods Appl. 14, Paper 067, 23 p. (2018; Zbl 1395.81127) Full Text: DOI arXiv OpenURL
Fioresi, Rita; Latini, Emanuele; Marrani, Alessio Quantum Klein space and superspace. (English) Zbl 1422.17017 SIGMA, Symmetry Integrability Geom. Methods Appl. 14, Paper 066, 20 p. (2018). MSC: 17B37 16T20 20G42 81R50 17B60 PDF BibTeX XML Cite \textit{R. Fioresi} et al., SIGMA, Symmetry Integrability Geom. Methods Appl. 14, Paper 066, 20 p. (2018; Zbl 1422.17017) Full Text: DOI arXiv OpenURL
Kanki, Masataka; Mase, Takafumi; Tokihiro, Tetsuji On the coprimeness property of discrete systems without the irreducibility condition. (English) Zbl 1393.37077 SIGMA, Symmetry Integrability Geom. Methods Appl. 14, Paper 065, 17 p. (2018). MSC: 37K10 37J35 39A10 PDF BibTeX XML Cite \textit{M. Kanki} et al., SIGMA, Symmetry Integrability Geom. Methods Appl. 14, Paper 065, 17 p. (2018; Zbl 1393.37077) Full Text: DOI arXiv OpenURL
Lamers, Jules The functional method for the domain-wall partition function. (English) Zbl 1397.82022 SIGMA, Symmetry Integrability Geom. Methods Appl. 14, Paper 064, 23 p. (2018). MSC: 82B23 30D05 82B20 PDF BibTeX XML Cite \textit{J. Lamers}, SIGMA, Symmetry Integrability Geom. Methods Appl. 14, Paper 064, 23 p. (2018; Zbl 1397.82022) Full Text: DOI arXiv OpenURL
Horozov, Emil \(d\)-orthogonal analogs of classical orthogonal polynomials. (English) Zbl 1393.33012 SIGMA, Symmetry Integrability Geom. Methods Appl. 14, Paper 063, 27 p. (2018). MSC: 33C45 30C15 34L20 PDF BibTeX XML Cite \textit{E. Horozov}, SIGMA, Symmetry Integrability Geom. Methods Appl. 14, Paper 063, 27 p. (2018; Zbl 1393.33012) Full Text: DOI arXiv OpenURL
Blaom, Anthony D. Lie algebroid invariants for subgeometry. (English) Zbl 1394.53020 SIGMA, Symmetry Integrability Geom. Methods Appl. 14, Paper 062, 36 p. (2018). MSC: 53A55 53B25 53C30 22A99 22F30 PDF BibTeX XML Cite \textit{A. D. Blaom}, SIGMA, Symmetry Integrability Geom. Methods Appl. 14, Paper 062, 36 p. (2018; Zbl 1394.53020) Full Text: DOI arXiv OpenURL
Takemura, Kouichi On \(q\)-deformations of the Heun equation. (English) Zbl 1395.39003 SIGMA, Symmetry Integrability Geom. Methods Appl. 14, Paper 061, 16 p. (2018). Reviewer: Jacques Sauloy (Toulouse) MSC: 39A13 33E10 39A60 PDF BibTeX XML Cite \textit{K. Takemura}, SIGMA, Symmetry Integrability Geom. Methods Appl. 14, Paper 061, 16 p. (2018; Zbl 1395.39003) Full Text: DOI arXiv OpenURL
Cummins, Chris; Matias, Rodrigo \((2+)\)-replication and the baby monster. (English) Zbl 1422.11092 SIGMA, Symmetry Integrability Geom. Methods Appl. 14, Paper 060, 33 p. (2018). MSC: 11F22 11F25 20D06 PDF BibTeX XML Cite \textit{C. Cummins} and \textit{R. Matias}, SIGMA, Symmetry Integrability Geom. Methods Appl. 14, Paper 060, 33 p. (2018; Zbl 1422.11092) Full Text: DOI arXiv OpenURL
Evripidou, Charalampos A.; van der Kamp, Peter H.; Zhang, Cheng Dressing the dressing chain. (English) Zbl 1394.35413 SIGMA, Symmetry Integrability Geom. Methods Appl. 14, Paper 059, 14 p. (2018). MSC: 35Q53 37K05 39A14 37K10 37K35 PDF BibTeX XML Cite \textit{C. A. Evripidou} et al., SIGMA, Symmetry Integrability Geom. Methods Appl. 14, Paper 059, 14 p. (2018; Zbl 1394.35413) Full Text: DOI arXiv OpenURL
Eremenko, Alexandre; Tarasov, Vitaly Fuchsian equations with three non-apparent singularities. (English) Zbl 1397.34153 SIGMA, Symmetry Integrability Geom. Methods Appl. 14, Paper 058, 12 p. (2018). Reviewer: Pascal Remy (Carrières-sur-Seine) MSC: 34M03 34M35 PDF BibTeX XML Cite \textit{A. Eremenko} and \textit{V. Tarasov}, SIGMA, Symmetry Integrability Geom. Methods Appl. 14, Paper 058, 12 p. (2018; Zbl 1397.34153) Full Text: DOI arXiv OpenURL
Kiming, Ian; Rustom, Nadim Dihedral group, 4-torsion on an elliptic curve, and a peculiar eigenform modulo 4. (English) Zbl 1422.11103 SIGMA, Symmetry Integrability Geom. Methods Appl. 14, Paper 057, 13 p. (2018). MSC: 11F33 11F80 11G05 PDF BibTeX XML Cite \textit{I. Kiming} and \textit{N. Rustom}, SIGMA, Symmetry Integrability Geom. Methods Appl. 14, Paper 057, 13 p. (2018; Zbl 1422.11103) Full Text: DOI arXiv OpenURL
Conway, Thomas Oliver; Deift, Percy Asymptotics of polynomials orthogonal with respect to a logarithmic weight. (English) Zbl 1391.33027 SIGMA, Symmetry Integrability Geom. Methods Appl. 14, Paper 056, 66 p. (2018). MSC: 33C47 34E05 34M50 PDF BibTeX XML Cite \textit{T. O. Conway} and \textit{P. Deift}, SIGMA, Symmetry Integrability Geom. Methods Appl. 14, Paper 056, 66 p. (2018; Zbl 1391.33027) Full Text: DOI arXiv OpenURL
Chen, Kai-Chieh; Yu, Jeng-Daw The Künneth formula for the twisted de Rham and Higgs cohomologies. (English) Zbl 1401.14115 SIGMA, Symmetry Integrability Geom. Methods Appl. 14, Paper 055, 14 p. (2018). Reviewer: Aleksandr G. Aleksandrov (Moskva) MSC: 14F40 18F20 14C30 PDF BibTeX XML Cite \textit{K.-C. Chen} and \textit{J.-D. Yu}, SIGMA, Symmetry Integrability Geom. Methods Appl. 14, Paper 055, 14 p. (2018; Zbl 1401.14115) Full Text: DOI arXiv OpenURL
Belliard, Samuel; Slavnov, Nikita A.; Vallet, Benoit Modified algebraic Bethe ansatz: twisted XXX case. (English) Zbl 1392.82020 SIGMA, Symmetry Integrability Geom. Methods Appl. 14, Paper 054, 18 p. (2018). MSC: 82B28 81R12 82B20 16T25 PDF BibTeX XML Cite \textit{S. Belliard} et al., SIGMA, Symmetry Integrability Geom. Methods Appl. 14, Paper 054, 18 p. (2018; Zbl 1392.82020) Full Text: DOI arXiv OpenURL
Matsumoto, Sho A spin analogue of Kerov polynomials. (English) Zbl 1391.05267 SIGMA, Symmetry Integrability Geom. Methods Appl. 14, Paper 053, 13 p. (2018). MSC: 05E10 20C30 05E05 PDF BibTeX XML Cite \textit{S. Matsumoto}, SIGMA, Symmetry Integrability Geom. Methods Appl. 14, Paper 053, 13 p. (2018; Zbl 1391.05267) Full Text: DOI arXiv OpenURL
Bhatnagar, Gaurav; Krattenthaler, Christian The determinant of an elliptic sylvesteresque matrix. (English) Zbl 1391.33040 SIGMA, Symmetry Integrability Geom. Methods Appl. 14, Paper 052, 15 p. (2018). MSC: 33D67 15A15 PDF BibTeX XML Cite \textit{G. Bhatnagar} and \textit{C. Krattenthaler}, SIGMA, Symmetry Integrability Geom. Methods Appl. 14, Paper 052, 15 p. (2018; Zbl 1391.33040) Full Text: DOI arXiv OpenURL
Tcheutia, Daniel D.; Jooste, Alta S.; Koepf, Wolfram Quasi-orthogonality of some hypergeometric and \(q\)-hypergeometric polynomials. (English) Zbl 1391.33012 SIGMA, Symmetry Integrability Geom. Methods Appl. 14, Paper 051, 26 p. (2018). MSC: 33C05 12D10 33C45 33D15 33F10 PDF BibTeX XML Cite \textit{D. D. Tcheutia} et al., SIGMA, Symmetry Integrability Geom. Methods Appl. 14, Paper 051, 26 p. (2018; Zbl 1391.33012) Full Text: DOI arXiv OpenURL
Tu, Fang-Ting; Yang, Yifan Evaluation of certain hypergeometric functions over finite fields. (English) Zbl 1430.11160 SIGMA, Symmetry Integrability Geom. Methods Appl. 14, Paper 050, 18 p. (2018). MSC: 11T23 11T24 11G05 11G30 33C05 PDF BibTeX XML Cite \textit{F.-T. Tu} and \textit{Y. Yang}, SIGMA, Symmetry Integrability Geom. Methods Appl. 14, Paper 050, 18 p. (2018; Zbl 1430.11160) Full Text: DOI arXiv OpenURL
Furukawa, Tomohiro; Moriyama, Sanefumi Jacobi-Trudi identity in super Chern-Simons matrix model. (English) Zbl 1388.05188 SIGMA, Symmetry Integrability Geom. Methods Appl. 14, Paper 049, 14 p. (2018). MSC: 05E05 37K10 PDF BibTeX XML Cite \textit{T. Furukawa} and \textit{S. Moriyama}, SIGMA, Symmetry Integrability Geom. Methods Appl. 14, Paper 049, 14 p. (2018; Zbl 1388.05188) Full Text: DOI arXiv OpenURL
Bonneux, Niels; Stevens, Marco Recurrence relations for Wronskian Hermite polynomials. (English) Zbl 1388.05016 SIGMA, Symmetry Integrability Geom. Methods Appl. 14, Paper 048, 29 p. (2018). MSC: 05A17 12E10 26C05 33C45 65Q30 PDF BibTeX XML Cite \textit{N. Bonneux} and \textit{M. Stevens}, SIGMA, Symmetry Integrability Geom. Methods Appl. 14, Paper 048, 29 p. (2018; Zbl 1388.05016) Full Text: DOI arXiv OpenURL
van Doorn, Erik A. On the strong ratio limit property for discrete-time birth-death processes. (English) Zbl 1391.60217 SIGMA, Symmetry Integrability Geom. Methods Appl. 14, Paper 047, 9 p. (2018). MSC: 60J80 42C05 PDF BibTeX XML Cite \textit{E. A. van Doorn}, SIGMA, Symmetry Integrability Geom. Methods Appl. 14, Paper 047, 9 p. (2018; Zbl 1391.60217) Full Text: DOI arXiv OpenURL
Lu, Kang Lower bounds for numbers of real self-dual spaces in problems of Schubert calculus. (English) Zbl 1391.14112 SIGMA, Symmetry Integrability Geom. Methods Appl. 14, Paper 046, 15 p. (2018). Reviewer: Cenap Özel (Bolu) MSC: 14N99 17B80 82B23 PDF BibTeX XML Cite \textit{K. Lu}, SIGMA, Symmetry Integrability Geom. Methods Appl. 14, Paper 046, 15 p. (2018; Zbl 1391.14112) Full Text: DOI arXiv OpenURL
Pilaud, Vincent; Plamondon, Pierre-Guy; Stella, Salvatore A \(\tau\)-tilting approach to dissections of polygons. (English) Zbl 1407.16009 SIGMA, Symmetry Integrability Geom. Methods Appl. 14, Paper 045, 8 p. (2018). MSC: 16G10 16G20 05E10 PDF BibTeX XML Cite \textit{V. Pilaud} et al., SIGMA, Symmetry Integrability Geom. Methods Appl. 14, Paper 045, 8 p. (2018; Zbl 1407.16009) Full Text: DOI arXiv OpenURL
Terwilliger, Paul The \(q\)-Onsager algebra and the universal Askey-Wilson algebra. (English) Zbl 1390.33038 SIGMA, Symmetry Integrability Geom. Methods Appl. 14, Paper 044, 18 p. (2018). MSC: 33D80 17B40 PDF BibTeX XML Cite \textit{P. Terwilliger}, SIGMA, Symmetry Integrability Geom. Methods Appl. 14, Paper 044, 18 p. (2018; Zbl 1390.33038) Full Text: DOI arXiv OpenURL
Ardehali, Arash Arabi The hyperbolic asymptotics of elliptic hypergeometric integrals arising in supersymmetric gauge theory. (English) Zbl 1390.33036 SIGMA, Symmetry Integrability Geom. Methods Appl. 14, Paper 043, 30 p. (2018). MSC: 33D67 33E05 41A60 81T13 81T60 PDF BibTeX XML Cite \textit{A. A. Ardehali}, SIGMA, Symmetry Integrability Geom. Methods Appl. 14, Paper 043, 30 p. (2018; Zbl 1390.33036) Full Text: DOI arXiv OpenURL
Abramochkin, Eugeny G.; Razueva, Evgeniya V. Higher derivatives of Airy functions and of their products. (English) Zbl 1390.33013 SIGMA, Symmetry Integrability Geom. Methods Appl. 14, Paper 042, 26 p. (2018). MSC: 33C10 33C05 33C20 PDF BibTeX XML Cite \textit{E. G. Abramochkin} and \textit{E. V. Razueva}, SIGMA, Symmetry Integrability Geom. Methods Appl. 14, Paper 042, 26 p. (2018; Zbl 1390.33013) Full Text: DOI arXiv OpenURL
Lobb, Sarah B.; Nijhoff, Frank W. A variational principle for discrete integrable systems. (English) Zbl 1402.35250 SIGMA, Symmetry Integrability Geom. Methods Appl. 14, Paper 041, 18 p. (2018). Reviewer: Ahmed Lesfari (El Jadida) MSC: 35Q53 37K60 39A14 49N99 35A15 37K10 PDF BibTeX XML Cite \textit{S. B. Lobb} and \textit{F. W. Nijhoff}, SIGMA, Symmetry Integrability Geom. Methods Appl. 14, Paper 041, 18 p. (2018; Zbl 1402.35250) Full Text: DOI arXiv OpenURL
Vicedo, Benoît; Young, Charles \((\mathfrak{gl}_M, \mathfrak{gl}_N)\)-dualities in Gaudin models with irregular singularities. (English) Zbl 1390.81232 SIGMA, Symmetry Integrability Geom. Methods Appl. 14, Paper 040, 28 p. (2018). MSC: 81R12 17B80 82B23 PDF BibTeX XML Cite \textit{B. Vicedo} and \textit{C. Young}, SIGMA, Symmetry Integrability Geom. Methods Appl. 14, Paper 040, 28 p. (2018; Zbl 1390.81232) Full Text: DOI arXiv OpenURL
Hosono, Shinobu; Takagi, Hiromichi Movable vs monodromy nilpotent cones of Calabi-Yau manifolds. (English) Zbl 1423.14091 SIGMA, Symmetry Integrability Geom. Methods Appl. 14, Paper 039, 37 p. (2018). MSC: 14E05 14E07 14J33 14N35 14J32 PDF BibTeX XML Cite \textit{S. Hosono} and \textit{H. Takagi}, SIGMA, Symmetry Integrability Geom. Methods Appl. 14, Paper 039, 37 p. (2018; Zbl 1423.14091) Full Text: DOI arXiv OpenURL
Lim, Kay Jin; Tan, Kai Meng Homomorphisms from Specht modules to signed Young permutation modules. (English) Zbl 06869615 SIGMA, Symmetry Integrability Geom. Methods Appl. 14, Paper 038, 21 p. (2018). MSC: 20C30 PDF BibTeX XML Cite \textit{K. J. Lim} and \textit{K. M. Tan}, SIGMA, Symmetry Integrability Geom. Methods Appl. 14, Paper 038, 21 p. (2018; Zbl 06869615) Full Text: DOI arXiv OpenURL