×

Noise induced aperiodic rotations of particles trapped by a non-conservative force. (English) Zbl 1390.37091

Summary: We describe a mechanism whereby random noise can play a constructive role in the manifestation of a pattern, aperiodic rotations, that would otherwise be damped by internal dynamics. The mechanism is described physically in a theoretical model of overdamped particle motion in two dimensions with symmetric damping and a non-conservative force field driven by noise. Cyclic motion only occurs as a result of stochastic noise in this system. However, the persistence of the cyclic motion is quantified by parameters associated with the non-conservative forcing. Unlike stochastic resonance or coherence resonance, where noise can play a constructive role in amplifying a signal that is otherwise below the threshold for detection, in the mechanism considered here, the signal that is detected does not exist without the noise. Moreover, the system described here is a linear system.{
©2018 American Institute of Physics}

MSC:

37H10 Generation, random and stochastic difference and differential equations
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Gammaitoni, L.; Hänggi, P.; Jung, P.; Marchesoni, F., Stochastic resonance, Rev. Mod. Phys., 70, 223-287, (1998) · doi:10.1103/RevModPhys.70.223
[2] Pikovsky, A. S.; Kurths, J., Coherence resonance in a noise-driven excitable system, Phys. Rev. Lett., 78, 775, (1997) · Zbl 0961.70506 · doi:10.1103/PhysRevLett.78.775
[3] Sun, B.; Lin, J.; Darby, E.; Grosberg, A. Y.; Grier, D. G., Brownian vortexes, Phys. Rev. E, 80, 010401, (2009) · doi:10.1103/PhysRevE.80.010401
[4] Moyses, H. W.; Bauer, R. O.; Grosberg, A. Y.; Grier, D. G., Pertubative theory for brownian vortexes, Phys. Rev. E, 91, 062144, (2015) · doi:10.1103/PhysRevE.91.062144
[5] Roichman, Y.; Sun, B.; Stolarski, A.; Grier, D. G., Influence of nonconservative optical forces on the dynamics of optically trapped colloidal spheres: The fountain of probability, Phys. Rev. Lett., 101, 128301, (2008) · doi:10.1103/PhysRevLett.101.128301
[6] Russell, D. I.; Blythe, R. A., Macroscopic observable probability currents in finite populations, J. Stat. Mech., 2013, P06008 · Zbl 1456.82789 · doi:10.1088/1742-5468/2013/06/P06008
[7] Simpson, S. H.; Hanna, S., First-order nonconservative motion of optically trapped nonspherical particles, Phys. Rev. E, 82, 031141, (2010) · doi:10.1103/PhysRevE.82.031141
[8] Toe, W. J.; Ortega-Piwonka, I.; Angstmann, C. N.; Gao, Q.; Tan, H. H.; Jagadish, C.; Henry, B. I.; Reece, P. J., Nonconservative dynamics of optically trapped high-aspect-ratio nanowires, Phys. Rev. E, 93, 022137, (2016) · doi:10.1103/PhysRevE.93.022137
[9] Irrera, A.; Magazzu, A.; Artoni, P.; Simpson, S.; Hanna, S.; Jones, P. H.; Priolo, F.; Gucciardi, P. G.; Marago, O. M., Photonic torque microscopy of the nonconservative force field for optically trapped silicon nanowires, Nano Lett., 16, 4181-4188, (2016) · doi:10.1021/acs.nanolett.6b01059
[10] Lax, M., Fluctuations from the non-equilibrium steady state, Rev. Mod. Phys., 32, 25-64, (1960) · Zbl 0128.22607 · doi:10.1103/RevModPhys.32.25
[11] Gardiner, C. W., Handbook of Stochastic Methods for Physics, Chemistry and the Natural Sciences, 13, (2004), Springer-Verlag: Springer-Verlag, Berlin · Zbl 1143.60001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.