Pogány, Tibor K. Integral form of le Roy-type hypergeometric function. (English) Zbl 1391.33031 Integral Transforms Spec. Funct. 29, No. 7, 580-584 (2018). MSC: 33C99 33E12 40C10 60E05 PDF BibTeX XML Cite \textit{T. K. Pogány}, Integral Transforms Spec. Funct. 29, No. 7, 580--584 (2018; Zbl 1391.33031) Full Text: DOI OpenURL
Brychkov, Yu. A. Some properties of the exponential polynomials. (English) Zbl 1391.33046 Integral Transforms Spec. Funct. 29, No. 7, 571-579 (2018). MSC: 33E20 PDF BibTeX XML Cite \textit{Yu. A. Brychkov}, Integral Transforms Spec. Funct. 29, No. 7, 571--579 (2018; Zbl 1391.33046) Full Text: DOI OpenURL
Zayed, Ahmed Two-dimensional fractional Fourier transform and some of its properties. (English) Zbl 1393.42011 Integral Transforms Spec. Funct. 29, No. 7, 553-570 (2018). MSC: 42B10 42C05 33C50 94A11 PDF BibTeX XML Cite \textit{A. Zayed}, Integral Transforms Spec. Funct. 29, No. 7, 553--570 (2018; Zbl 1393.42011) Full Text: DOI OpenURL
Mu, Yan-Ping Recurrence relations for the connection coefficients of classical orthogonal polynomials. (English) Zbl 1391.33025 Integral Transforms Spec. Funct. 29, No. 7, 543-552 (2018). MSC: 33C45 33D15 33F10 PDF BibTeX XML Cite \textit{Y.-P. Mu}, Integral Transforms Spec. Funct. 29, No. 7, 543--552 (2018; Zbl 1391.33025) Full Text: DOI OpenURL
Cho, Yong-Kum; Yun, Hera Newton diagram of positivity for \(_1F_2\) generalized hypergeometric functions. (English) Zbl 1391.33017 Integral Transforms Spec. Funct. 29, No. 7, 527-542 (2018). MSC: 33C20 46E22 PDF BibTeX XML Cite \textit{Y.-K. Cho} and \textit{H. Yun}, Integral Transforms Spec. Funct. 29, No. 7, 527--542 (2018; Zbl 1391.33017) Full Text: DOI arXiv OpenURL
Soltani, Fethi Fock-type spaces associated to higher-order Bessel operator. (English) Zbl 1393.30042 Integral Transforms Spec. Funct. 29, No. 7, 514-526 (2018). MSC: 30H20 47B35 PDF BibTeX XML Cite \textit{F. Soltani}, Integral Transforms Spec. Funct. 29, No. 7, 514--526 (2018; Zbl 1393.30042) Full Text: DOI OpenURL
Guo, Victor J. W.; Zudilin, Wadim Ramanujan-type formulae for \(1/\pi: q\)-analogues. (English) Zbl 1436.11024 Integral Transforms Spec. Funct. 29, No. 7, 505-513 (2018). MSC: 11B65 11Y60 33C20 33D15 PDF BibTeX XML Cite \textit{V. J. W. Guo} and \textit{W. Zudilin}, Integral Transforms Spec. Funct. 29, No. 7, 505--513 (2018; Zbl 1436.11024) Full Text: DOI arXiv OpenURL