×

Role of myocardial viscoelasticity in disturbances of electrical and mechanical activity in calcium overloaded cardiomyocytes: mathematical modeling. (English) Zbl 1405.92059

Summary: Cardiomyocyte Ca\(^{2+}\) overload is closely linked to cardiac arrhythmias. We have earlier shown in a mathematical model that myocardium mechanical activity may contribute to rhythm disturbances induced by Ca\(^{2+}\) overload in cardiomyocytes with reduced Na\(^+\)-K\(^+\) pump work [T. Sulman et al., Bull. Math. Biol. 70, No. 3, 910–949 (2008; Zbl 1142.92008)]. The same model is used here to address possible contribution of the passive mechanical properties of cardiac muscle (i.e. myocardial viscous and elastic properties) to the arrhythmogenesis. In a series of contractions at regular pacing rate of 75 beats/min a model with higher viscosity demonstrated essentially earlier appearance of extrasystoles due to a faster cardiomyocyte Ca\(^{2+}\) loading up to a level triggering spontaneous Ca\(^{2+}\) releases from the sarcoplasmic reticulum. The model predicts that myocardial elasticity also may affect arrhythmogenesis in cardiomyocytes overloaded with Ca\(^{2+}\). Contribution of the mechanical properties of the myocardial tissue to the arrhythmia has been analyzed for wide ranges of both viscosity and elasticity coefficients. The results suggest that myocardial viscoelastic properties may be a factor affecting Ca\(^{2+}\) handling in cardiomyocytes and contributing to cardiac mechano-electric feedback in arrhythmogenesis.

MSC:

92C30 Physiology (general)
92C10 Biomechanics

Citations:

Zbl 1142.92008
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Apstein, C.S.; Grossman, W., Opposite initial effects of supply and demand ischemia on left ventricular diastolic compliance: the ischemia-diastolic paradox, J. mol. cell cardiol., 19, 1, 119-128, (1987)
[2] Arentzen, C.E.; O’Connor, M.J.; Ring, W.S.; Schneider, J.R.; Visner, M.S.; Bache, R.J.; Anderson, R.W., Relation between regional myocardial properties and regional myocardial blood flow during transient partial and total coronary occlusions, Surg. forum, 31, 281-290, (1980)
[3] Brink, A.J.; Lochner, A., Contractility and tension development of the myopathic hamster (bio 14-6) heart, Cardiovasc. res., 3, 4, 453-458, (1969)
[4] Brutsaert, D.; Sys, S.; De Clerck, N., Control of relaxation of Mammalian cardiac muscle, (), 139-160
[5] Chase, P.B.; Denkinger, T.M.; Kushmerick, M.J., Effect of viscosity on mechanics of single, skinned fibers from rabbit psoas muscle, Biophys. J., 74, 3, 1428-1438, (1998)
[6] Chiu, Y.L.; Ballou, E.W.; Ford, L.E., Internal viscoelastic loading in cat papillary muscle, Biophys. J., 40, 2, 109-120, (1982)
[7] Factor, S.M.; Robinson, T.F., Comparative connective tissue structure – function relationships in biologic pumps, Lab. invest., 58, 2, 150-156, (1988)
[8] Gaasch, W.H.; Battle, W.E.; Oboler, A.A.; Banas, J.S.; Levine, H.J., Left ventricular stress and compliance in man. with special reference to normalized ventricular function curves, Circulation, 45, 4, 746-762, (1972)
[9] Gordon, A.M.; Regnier, M.; Homsher, E., Skeletal and cardiac muscle contractile activation: tropomyosin “rocks and rolls”, News physiol. sci., 16, 49-55, (2001)
[10] Izakov, V.; Katsnelson, L.B.; Blyakhman, F.A.; Markhasin, V.S.; Shklyar, T.F., Cooperative effects due to calcium binding by troponin and their consequences for contraction and relaxation of cardiac muscle under various conditions of mechanical loading, Circ. res., 69, 5, 1171-1184, (1991)
[11] Katsnelson, L.B.; Markhasin, V.S., Mathematical modeling of relations between the kinetics of free intracellular calcium and mechanical function of myocardium, J. mol. cell cardiol., 28, 3, 475-486, (1996)
[12] Katsnelson, L.B.; Markhasin, V.S.; Khazieva, N.S., Mathematical modeling of the effect of the sarcoplasmic reticulum calcium pump function on load dependent myocardial relaxation, Gen. physiol. biophys., 19, 2, 137-170, (2000)
[13] Katsnelson, L.B.; Nikitina, L.V.; Chemla, D.; Solovyova, O.; Coirault, C.; Lecarpentier, Y.; Markhasin, V.S., Influence of viscosity on myocardium mechanical activity: a mathematical model, J. theor. biol., 230, 3, 385-405, (2004) · Zbl 1447.92027
[14] Lab, M.J.; Allen, D.G.; Orchard, C.H., The effects of shortening on myoplasmic calcium concentration and on the action potential in Mammalian ventricular muscle, Circ. res., 55, 6, 825-829, (1984)
[15] Lecarpentier, Y.; Chemla, D., Mechanical analysis of sarcomeres by laser diffraction: energy exchange and cardiac insufficiency, (), 137-160
[16] Lecarpentier, Y.; Martin, J.L.; Claes, V.; Chambaret, J.P.; Migus, A.; Antonetti, A.; Hatt, P.Y., Real-time kinetics of sarcomere relaxation by laser diffraction, Circ. res., 56, 3, 331-339, (1985)
[17] Lecarpentier, Y.C.; Chuck, L.H.; Housmans, P.R.; De Clerck, N.M.; Brutsaert, D.L., Nature of load dependence of relaxation in cardiac muscle, Am. J. physiol., 237, 4, H455-H460, (1979)
[18] Levine, H.J., Compliance of the left ventricle, Circulation, 46, 3, 423-426, (1972)
[19] Loeffler, L.; Sagawa, K., A one-dimensional viscoelastic model of cat heart muscle studied by small length perturbations during isometric contraction, Circ. res., 36, 4, 498-512, (1975)
[20] Luo, C.H.; Rudy, Y., A dynamic model of the cardiac ventricular action potential. II. afterdepolarizations, triggered activity, and potentiation, Circ. res., 74, 6, 1097-1113, (1994)
[21] Markhasin, V.S.; Izakov, V.Y.; Shumakov, V.I., Physiological reasons of the myocardium contractile function disturbance, (1994), Nauka St. Peterburg, p. 245 (in Russian)
[22] Noble, D.; Varghese, A., Modelling of sodium-overload arrhythmias and their suppression, Can. J. cardiol., 14, 1, 97-100, (1998)
[23] Noble, D.; Varghese, A.; Kohl, P.; Noble, P., Improved guinea-pig ventricular cell model incorporating a diadic space, ikr and IKs, and length- and tension-dependent processes, Can. J. cardiol., 14, 1, 123-134, (1998)
[24] Sato, N.; Miura, M.; Uchida, N.; Fukuju, T.; Mohri, H.; Koiwa, Y.; Takagi, T.; Tezuka, F., Changes in viscoelasticity of the myocardium during cardioplegic arrest, Tohoku J. exp. med., 178, 3, 251-261, (1996)
[25] Solov’eva, O.E.; Markhasin, V.S.; Romanchenko, T.; Katsnel’son, L.B., [mathematical model of a generalized calcium buffer in cardiac muscle cells], Biofizika, 44, 1, 91-101, (1999)
[26] Solovyova, O.; Katsnelson, L.; Guriev, S.; Nikitina, L.; Protsenko, Y.; Routkevitch, S.; Markhasin, V., Mechanical inhomogeneity of myocardium studied in parallel and serial cardiac muscle duplexes: experiments and models, Chaos solitons fractals, 13, 8, 1685-1711, (2002)
[27] Solovyova, O.; Vikulova, N.; Katsnelson, L.B.; Markhasin, V.S.; Noble, P.J.; Garny, A.F.; Kohl, P.; Noble, D., Mechanical interaction of heterogeneous cardiac muscle segments in silico: effects on ca^{2+} handling and action potential, Int. J. bifurcation chaos, 13, 12, 3757-3782, (2003) · Zbl 1088.92011
[28] Solovyova, O.; Vikulova, N.; Konovalov, P.; Kohl, P.; Markhasin, V.S., Mathematical modelling of mechano-electric feedback in cardiomyocytes, Russ. J. numer. anal. math. modelling, 19, 4, 331-351, (2004) · Zbl 1050.92036
[29] Starc, V.; Yellin, E.L.; Nikolic, S.D., Viscoelastic behavior of the isolated guinea pig left ventricle in diastole, Am. J. physiol., 271, 4, Part 2, H1314-H1324, (1996)
[30] Sulman, T.; Katsnelson, L.B.; Solovyova, O.; Markhasin, V.S., Mathematical modeling of mechanically modulated rhythm disturbances in homogeneous and heterogeneous myocardium with attenuated activity of na(+)-K(+) pump, Bull. math. biol., 70, 3, 910-949, (2008) · Zbl 1142.92008
[31] Tsaturyan, A.K.; Izacov, V.J.; Zhelamsky, S.V.; Bykov, B.L., Extracellular fluid filtration as the reason for the viscoelastic behaviour of the passive myocardium, J. biomech., 17, 10, 749-755, (1984)
[32] Visner, M.S.; Arentzen, C.E.; Parrish, D.G.; Larson, E.V.; O’Connor, M.J.; Crumbley, A.J.; Bache, R.J.; Anderson, R.W., Effects of global ischemia on the diastolic properties of the left ventricle in the conscious dog, Circulation, 71, 3, 610-619, (1985)
[33] White, E.; Le Guennec, J.Y.; Nigretto, J.M.; Gannier, F.; Argibay, J.A.; Garnier, D., The effects of increasing cell length on auxotonic contractions; membrane potential and intracellular calcium transients in single guinea-pig ventricular myocytes, Exp. physiol., 78, 1, 65-78, (1993)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.