×

Multilevel adaptive sparse Leja approximations for Bayesian inverse problems. (English) Zbl 1432.35250

An adaptive sparse grid stochastic collocation approach based upon Leja interpolation sequences for approximation of parametrized functions with high-dimensional parameters were proposed in [A. Narayan and J. D. Jakeman, SIAM J. Sci. Comput. 36, No. 6, A2952–A2983 (2014; Zbl 1316.65018)].
For Bayesian inverse problems the authors formulate and test a multilevel adaptive sparse Leja algorithm. A very detailed description is given how the Leja approximation is used. As the model discretization is coarse, the construction of the sparse grid is computationally effecient.
In numerical examples such as elliptic inverse problems it seems superior to Markov Chain Monte Carlo Sampling and a standard multilevel approximation.

MSC:

35R30 Inverse problems for PDEs
65D30 Numerical integration
35J25 Boundary value problems for second-order elliptic equations
62F15 Bayesian inference
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
68T05 Learning and adaptive systems in artificial intelligence
62-08 Computational methods for problems pertaining to statistics

Citations:

Zbl 1316.65018
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] S. Brooks, A. Gelman, G. L. Jones, and X.-L. Meng, Handbook of Markov Chain Monte Carlo, Chapman & Hall/CRC Handb. Mod. Stat. Methods, CRC Press, Boca Raton, FL, 2011. · Zbl 1218.65001
[2] H.-J. Bungartz and M. Griebel, Sparse grids, Acta Numer., 13 (2004), pp. 147-269. · Zbl 1118.65388
[3] P. Chen and C. Schwab, Sparse-grid, reduced-basis Bayesian inversion, Comput. Methods Appl. Mech. Engrg., 297 (2015), pp. 84-115. · Zbl 1425.65020
[4] P. Chen and C. Schwab, Adaptive sparse grid model order reduction for fast Bayesian estimation and inversion, in Sparse Grids and Applications-Stuttgart 2014, Lect. Notes Comput. Sci. Eng. 109, Springer, Cham, 2016, pp. 1-27. · Zbl 1337.65012
[5] P. Chen, U. Villa, and O. Ghattas, Hessian-based adaptive sparse quadrature for infinite-dimensional Bayesian inverse problems, Comput. Methods Appl. Mech. Engrg., 327 (2017), pp. 147-172. · Zbl 1439.65071
[6] P. Conrad and Y. Marzouk, Adaptive Smolyak pseudospectral approximations, SIAM J. Sci. Comput., 35 (2013), pp. A2643-A2670. · Zbl 1294.41004
[7] P. Del Moral, A. Doucet, and A. Jasra, Sequential Monte Carlo samplers, J. R. Stat. Soc. Ser. B Stat. Methodol., 68 (2006). · Zbl 1105.62034
[8] J. Dick, R. N. Gantner, Q. T. Le Gia, and C. Schwab, Multilevel higher-order quasi-Monte Carlo Bayesian estimation, Math. Models Methods Appl. Sci., 27 (2017), pp. 953-995. · Zbl 1375.65169
[9] T. Dodwell, C. Ketelsen, R. Scheichl, and A. Teckentrup, A hierarchical multilevel Markov chain Monte Carlo algorithm with applications to uncertainty quantification in subsurface flow, SIAM/ASA J. Uncertain. Quantif., 3 (2015), pp. 1075-1108. · Zbl 1330.65007
[10] S. E. Dosso, C. W. Holland, and M. Sambridge, Parallel tempering for strongly nonlinear geoacoustic inversion, J. Acoust. Soc. Am., 132 (2012), pp. 3030-3040.
[11] M. Eigel, M. Marschall, and R. Schneider, Sampling-free Bayesian inversion with adaptive hierarchical tensor representations, Inverse Problems, 34 (2018), 035010. · Zbl 1404.65261
[12] O. G. Ernst, B. Sprungk, and L. Tamellini, On Expansions and Nodes for Sparse Grid Collocation of Lognormal Elliptic PDEs, https://arxiv.org/abs/1906.01252, 2019. · Zbl 1498.65210
[13] I.-G. Farcaş, T. Görler, H.-J. Bungartz, F. Jenko, and T. Neckel, Sensitivity-Driven Adaptive Sparse Stochastic Approximations in Plasma Microinstability Analysis, https://arxiv.org/abs/1812.00080, 2018. · Zbl 1436.65024
[14] I.-G. Farcaş, P. C. Sârbu, H.-J. Bungartz, T. Neckel, and B. Uekermann, Multilevel adaptive stochastic collocation with dimensionality reduction, in Sparse Grids and Applications-Miami 2016, J. Garcke, D. Pflüger, C. G. Webster, and G. Zhang, eds., Springer, Cham, 2018, pp. 43-68. · Zbl 1408.65072
[15] M. Frangos, Y. Marzouk, K. Willcox, and B. van Bloemen Waanders, Surrogate and reduced-order modeling: A comparison of approaches for large-scale statistical inverse problems, in Large-Scale Inverse Problems and Quantification of Uncertainty, Wiley Ser. Comput. Stat., Wiley, Chichester, UK, 2011, pp. 123-149.
[16] N. Georg, D. Loukrezis, U. Römer, and S. Schöps, Uncertainty Quantification for an Optical Grating Coupler with an Adjoint-Based Leja Adaptive Collocation Method, CoRR, https://arxiv.org/abs/1807.07485, 2018.
[17] T. Gerstner and M. Griebel, Dimension-adaptive tensor-product quadrature, Computing, 71 (2003), pp. 65-87. · Zbl 1030.65015
[18] M. Griebel, M. Schneider, and C. Zenger, A combination technique for the solution of sparse grid problems, in Iterative Methods in Linear Algebra, P. de Groen and R. Beauwens, eds., North-Holland, Amsterdam, 1992, pp. 263-281. · Zbl 0785.65101
[19] J. Hadamard, Sur les problèmes aux dérivés partielles et leur signification physique, Princeton Univ. Bull., 13 (1902), pp. 49-52.
[20] M. Hegland, Adaptive sparse grids, Anziam J., 44 (2003), pp. C335-C353. · Zbl 1078.65520
[21] K. Ito and B. Jin, Inverse Problems: Tikhonov Theory and Algorithms, World Scientific, Singapore, 2014. · Zbl 1306.65210
[22] P. Jantsch, C. G. Webster, and G. Zhang, On the Lebesgue constant of weighted Leja points for Lagrange interpolation on unbounded domains, IMA J. Numer. Anal., 39 (2018), pp. 1039-1057. · Zbl 1465.41001
[23] L. Jiang and N. Ou, Bayesian inference using intermediate distribution based on coarse multiscale model for time fractional diffusion equations, Multiscale Model. Simul., 16 (2018), pp. 327-355. · Zbl 1393.65032
[24] J. Kaipio and E. Somersalo, Statistical and Computational Inverse Problems, Appl. Math. Sci., 160, Springer-Verlag, New York, 2005. · Zbl 1068.65022
[25] M. C. Kennedy and A. O’Hagan, Bayesian calibration of computer models, J. R. Stat. Soc. Ser. B Stat. Methodol., 63 (2001), pp. 425-464. · Zbl 1007.62021
[26] J. Latz, On the Well-posedness of Bayesian Inverse Problems, https://arxiv.org/abs/1902.10257, 2019. · Zbl 1437.49050
[27] J. Latz, M. Eisenberger, and E. Ullmann, Fast sampling of parameterised Gaussian random fields, Comput. Methods Appl. Mech. Eng., 348 (2019), pp. 978-1012. · Zbl 1441.65001
[28] J. Latz, I. Papaioannou, and E. Ullmann, Multilevel sequential \({}^2\) Monte Carlo for Bayesian inverse problems, J. Comput. Phys., 368 (2018), pp. 154-178. · Zbl 1392.65012
[29] J. Li and Y. M. Marzouk, Adaptive construction of surrogates for the Bayesian solution of inverse problems, SIAM J. Sci. Comput., 36 (2014), pp. A1163-A1186. · Zbl 1415.65009
[30] C. Lieberman, K. Willcox, and O. Ghattas, Parameter and state model reduction for large-scale statistical inverse problems, SIAM J. Sci. Comput., 32 (2010), pp. 2523-2542. · Zbl 1217.65123
[31] X. Ma and N. Zabaras, An efficient Bayesian inference approach to inverse problems based on an adaptive sparse grid collocation method, Inverse Problems, 25 (2009), 035013. · Zbl 1161.62011
[32] Y. Marzouk, T. Moselhy, M. Parno, and A. Spantini, Sampling via measure transport: An introduction, in Handbook of Uncertainity Quantification, Springer, Cham, 2016, pp. 1-41.
[33] Y. Marzouk and D. Xiu, A stochastic collocation approach to Bayesian inference in inverse problems, Commun. Comput. Phys., 6 (2009), pp. 826-847. · Zbl 1364.62064
[34] S. A. Mattis and B. Wohlmuth, Goal-oriented adaptive surrogate construction for stochastic inversion, Comput. Methods Appl. Mech. Engrg., 339 (2018), pp. 36-60. · Zbl 1441.65006
[35] A. Narayan and J. D. Jakeman, Adaptive Leja sparse grid constructions for stochastic collocation and high-dimensional approximation, SIAM J. Sci. Comput., 36 (2014), pp. A2952-A2983. · Zbl 1316.65018
[36] B. Peherstorfer and Y. Marzouk, A Transport-Based Multifidelity Preconditioner for Markov Chain Monte Carlo, https://arxiv.org/abs/1808.09379, 2018. · Zbl 07179095
[37] B. Peherstorfer, K. Willcox, and M. Gunzburger, Survey of multifidelity methods in uncertainty propagation, inference, and optimization, SIAM Rev., 60 (2018), pp. 550-591. · Zbl 1458.65003
[38] R. Scheichl, A. Stuart, and A. Teckentrup, Quasi-Monte Carlo and multilevel Monte Carlo methods for computing posterior expectations in elliptic inverse problems, SIAM/ASA J. Uncertain. Quantif., 5 (2017), pp. 493-518. · Zbl 1516.65118
[39] C. Schillings and C. Schwab, Sparse, adaptive Smolyak quadratures for Bayesian inverse problems, Inverse Problems, 29 (2013), 065011. · Zbl 1278.65008
[40] C. Schillings and C. Schwab, Sparsity in Bayesian inversion of parametric operator equations, Inverse Problems, 30 (2014), 065007. · Zbl 1291.65033
[41] C. Schwab and A. M. Stuart, Sparse deterministic approximation of Bayesian inverse problems, Inverse Problems, 28 (2012), 045003. · Zbl 1236.62014
[42] S. Smolyak, Quadrature and interpolation formulas for tensor products of certain classes of functions, Soviet Math. Dokl., 4 (1963), pp. 240-243. · Zbl 0202.39901
[43] I. M. Sobol’, Global sensitivity indices for nonlinear mathematical models and their monte carlo estimates, Math. Comput. Simul., 55 (2001), pp. 271-280. · Zbl 1005.65004
[44] A. Stuart, Inverse problems: A Bayesian perspective, Acta Numer., 19 (2010), pp. 451-559. · Zbl 1242.65142
[45] A. Stuart and A. Teckentrup, Posterior consistency for Gaussian process approximations of Bayesian posterior distributions, Math. Comp., 87 (2018), pp. 721-753. · Zbl 1429.60040
[46] B. Sudret, Global sensitivity analysis using polynomial chaos expansions, Reliab. Eng. Syst. Safe., 93 (2008), pp. 964-979.
[47] A. Tarantola, Inverse Problem Theory and Methods for Model Parameter Estimation, SIAM, Philadelphia, 2005. · Zbl 1074.65013
[48] R. Tempone and S. Wolfers, Smolyak’s algorithm: A powerful black box for the acceleration of scientific computations, in Sparse Grids and Applications-Miami 2016, J. Garcke, D. Pflüger, C. G. Webster, and G. Zhang, eds., Springer, Cham, 2018, pp. 201-228. · Zbl 07007957
[49] J. Winokur, D. Kim, F. Bisetti, O. P. Le Maître, and O. M. Knio, Sparse pseudo spectral projection methods with directional adaptation for uncertainty quantification, J. Sci. Comput., 68 (2016), pp. 596-623. · Zbl 1371.65015
[50] L. Yan and Y.-X. Zhang, Convergence analysis of surrogate-based methods for Bayesian inverse problems, Inverse Problems, 33 (2017), 125001. · Zbl 1383.65009
[51] L. Yan and T. Zhou, Adaptive multi-fidelity polynomial chaos approach to Bayesian inference in inverse problems, J. Comput. Phys., 381 (2019), pp. 110-128. · Zbl 1451.62033
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.