×

Estimating dynamical dimensions from noisy observations. (English) Zbl 1447.62105

Summary: Knowledge of the dynamical dimension mitigates the “curse of dimensionality” by permitting analysis in dimension lower than that of the original state vectors. The description length quantifies complexity and so allows us to use Occam’s razor to estimate the dynamical dimension underlying noisily observed data. Applying our method, based on the description length, to a coarsely sampled scalar time series requires the choice of only one parameter; an embedding dimension. For the three systems considered in this study observed amid observational noise, a single choice of embedding dimension does provide reasonable estimates of the dynamical dimension. The spatial distribution of local estimates of dynamical dimension aids visualisation and provides extra insight into the geometric structure of many systems.

MSC:

62M10 Time series, auto-correlation, regression, etc. in statistics (GARCH)
62H12 Estimation in multivariate analysis
PDFBibTeX XMLCite
Full Text: DOI Link

References:

[1] Abarbanel, H., Analysis of Observed Chaotic Data (1996), Springer Science & Business Media: Springer Science & Business Media New York · Zbl 0890.93006
[2] Abarbanel, H. D.; Kennel, M. B., Local false nearest neighbors and dynamical dimensions from observed chaotic data, Phys. Rev. E, 47, 5, 3057-3068 (1993)
[3] Amsaleg, L.; Chelly, O.; Furon, T.; Girard, S.; Houle, M. E.; Kawarabayashi, K.-i.; Nett, M., Estimating local intrinsic dimensionality, Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 29-38 (2015), ACM
[4] Bouveyron, C.; Celeux, G.; Girard, S., Intrinsic dimension estimation by maximum likelihood in isotropic probabilistic PCA, Pattern Recognit. Lett., 32, 14, 1706-1713 (2011)
[5] Broomhead, D.; Jones, R.; King, G. P., Topological dimension and local coordinates from time series data, J. Phys. A Math. Gen., 20, 9, L563 (1987) · Zbl 0644.58030
[6] Brown, R.; Bryant, P.; Abarbanel, H. D., Computing the Lyapunov spectrum of a dynamical system from an observed time series, Phys. Rev. A, 43, 6, 2787-2806 (1991)
[7] Camastra, F., Data dimensionality estimation methods: a survey, Pattern Recognit., 36, 12, 2945-2954 (2003) · Zbl 1059.68100
[8] Camastra, F.; Staiano, A., Intrinsic dimension estimation: advances and open problems, Inf. Sci. (Ny), 328, 26-41 (2016) · Zbl 1392.62171
[9] Fan, M.; Gu, N.; Qiao, H.; Zhang, B., Dimensionality reduction: an interpretation from manifold regularization perspective, Inf. Sci. (Ny), 277, 694-714 (2014) · Zbl 1354.68222
[10] Fukunaga, K.; Olsen, D. R., An algorithm for finding intrinsic dimensionality of data, IEEE Trans. Comput., 100, 2, 176-183 (1971) · Zbl 0216.50201
[11] Gracia, A.; González, S.; Robles, V.; Menasalvas, E., A methodology to compare dimensionality reduction algorithms in terms of loss of quality, Inf. Sci. (Ny), 270, 1-27 (2014)
[12] Grassberger, P.; Hegger, R.; Kantz, H.; Schaffrath, C.; Schreiber, T., On noise reduction methods for chaotic data., Chaos Interdiscip. J. Nonlinear Sci., 3, 2, 127-141 (1993) · Zbl 1055.37585
[13] Grinstead, C. M.; Snell, J. L., Introduction to Probability (2012), American Mathematical Society
[14] Hénon, M., A two-dimensional mapping with a strange attractor, The Theory of Chaotic Attractors, 94-102 (1976), Springer · Zbl 0576.58018
[15] Hesiod, Hesiod: Theogony, Works and Days, Testimonia (G. Most, ed. and trans.)., 1 (2006), Harvard University Press
[16] Holm, D. D.; Schmah, T.; Stoica, C., Geometric Mechanics and Symmetry: From Finite to Infinite Dimensions, 12 (2009), Oxford University Press · Zbl 1175.70001
[17] Judd, K., An improved estimator of dimension and some comments on providing confidence intervals, Phys. D, 56, 2, 216-228 (1992) · Zbl 0761.58027
[18] Kantz, H.; Schreiber, T., Nonlinear Time Series Analysis (2004), Cambridge University Press: Cambridge University Press New York · Zbl 1050.62093
[19] Kramer, M. A., Nonlinear principal component analysis using autoassociative neural networks, AlChE J., 37, 2, 233-243 (1991)
[20] Krawczak, M.; Szkatuła, G., An approach to dimensionality reduction in time series, Inf. Sci. (Ny), 260, 15-36 (2014) · Zbl 1329.62381
[21] Lee, J., Introduction to Topological Manifolds, 940 (2011), Springer · Zbl 1209.57001
[22] Lorenz, E. N., Deterministic nonperiodic flow., J. Atmos. Sci., 20, 2, 130-141 (1963) · Zbl 1417.37129
[23] Mandelbrot, B. B., The Fractal Geometry of Nature (1983), W. H. Freeman and Company: W. H. Freeman and Company San Fransisco · Zbl 1194.30028
[24] Marsden, J. E., Elementary Classical Analysis (1974), W. H. Freeman and Company: W. H. Freeman and Company San Frncisco · Zbl 0285.26005
[25] Morin, D., Introduction to Classical Mechanics: With Problems and Solutions (2008), Cambridge University Press · Zbl 1145.70001
[26] Oakley, B.; Weinstein, J., The Simpsons, Season 6, Episode 10 (1994)
[27] Ott, E., Obituary: Edward N. Lorenz (1917-2008), Nature, 453, 7193 (2008)
[28] Potapov, A.; Ali, M., Neural networks for estimating intrinsic dimension, Phys. Rev. E, 65, 4, 046212 (2002)
[29] Rissanen, J., Generalized Kraft inequality and arithmetic coding, IBM J. Res. Dev., 20, 3, 198-203 (1976) · Zbl 0339.94009
[30] Rissanen, J., Modeling by shortest data description, Automatica, 14, 5, 465-471 (1978) · Zbl 0418.93079
[31] Rissanen, J., A universal prior for integers and estimation by minimum description length, Ann. Stat., 11, 2, 416-431 (1983) · Zbl 0513.62005
[32] Russell, D. A.; Hanson, J. D.; Ott, E., Dimension of strange attractors, Phys. Rev. Lett., 45, 1175-1178 (1980)
[33] Sauer, T.; Yorke, J. A.; Casdagli, M., Embedology, J. Stat. Phys., 65, 3,4, 579-616 (1991) · Zbl 0943.37506
[34] Shampine, L. F.; Reichelt, M. W., The MATLAB ODE suite, SIAM J. Sci. Comput., 18, 1, 1-22 (1997) · Zbl 0868.65040
[35] Shang, F.; Liu, Y.; Tong, H.; Cheng, J.; Cheng, H., Robust bilinear factorization with missing and grossly corrupted observations, Inf. Sci. (Ny), 307, 53-72 (2015) · Zbl 06868730
[36] Strogatz, S. H., Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and Engineering (2015), Westview Press · Zbl 1343.37001
[37] Taylor, E. F.; Wheeler, J. A., Spacetime Physics (1992), Macmillan
[38] Viswanath, D., The fractal property of the Lorenz attractor, Phys. D, 190, 1, 115-128 (2004) · Zbl 1041.37013
[39] Welling, M.; Agakov, F. V.; Williams, C. K., Extreme components analysis., Proceedings of the NIPS, 137-144 (2003)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.