Strelkova, Elena V. Approximation by local parabolic splines constructed on the basis of interpolation in the mean. (English) Zbl 1450.65014 Ural Math. J. 3, No. 1, 81-94 (2017). MSC: 65D15 65D07 PDF BibTeX XML Cite \textit{E. V. Strelkova}, Ural Math. J. 3, No. 1, 81--94 (2017; Zbl 1450.65014) Full Text: DOI MNR OpenURL
Shevaldin, Valerii T. Calibration relations for analogues of the basis splines with uniform nodes. (English) Zbl 1450.65013 Ural Math. J. 3, No. 1, 76-80 (2017). MSC: 65D15 PDF BibTeX XML Cite \textit{V. T. Shevaldin}, Ural Math. J. 3, No. 1, 76--80 (2017; Zbl 1450.65013) Full Text: DOI MNR OpenURL
Shaburov, Alexander A. Asymptotic expansion of a solution for one singularly perturbed optimal control problem in \(\mathbb{R}^n\) with a convex integral quality index. (English) Zbl 1448.49031 Ural Math. J. 3, No. 1, 68-75 (2017). MSC: 49K21 49N05 PDF BibTeX XML Cite \textit{A. A. Shaburov}, Ural Math. J. 3, No. 1, 68--75 (2017; Zbl 1448.49031) Full Text: DOI MNR OpenURL
Popovich, Alexander L. Finite nilsemigroups with modular congruence lattices. (English) Zbl 1446.20077 Ural Math. J. 3, No. 1, 52-67 (2017). MSC: 20M10 08A30 06C05 PDF BibTeX XML Cite \textit{A. L. Popovich}, Ural Math. J. 3, No. 1, 52--67 (2017; Zbl 1446.20077) Full Text: DOI MNR OpenURL
Gusev, Mikhail I. An algorithm for computing boundary points of reachable sets of control systems under integral constraints. (English) Zbl 1448.93019 Ural Math. J. 3, No. 1, 44-51 (2017). MSC: 93B03 93B05 93C10 PDF BibTeX XML Cite \textit{M. I. Gusev}, Ural Math. J. 3, No. 1, 44--51 (2017; Zbl 1448.93019) Full Text: DOI MNR Link OpenURL
Elbert, Alexander E.; Zakharov, Sergey V. Dispersive rarefaction wave with a large initial gradient. (English) Zbl 1448.35442 Ural Math. J. 3, No. 1, 33-43 (2017). MSC: 35Q53 35B40 35C20 35B25 65D32 PDF BibTeX XML Cite \textit{A. E. Elbert} and \textit{S. V. Zakharov}, Ural Math. J. 3, No. 1, 33--43 (2017; Zbl 1448.35442) Full Text: DOI MNR OpenURL
Efimov, Konstantin S.; Makhnev, Alexander A. Automorphisms of distance-regular graph with intersection array \(\{25,16,1;1,8,25\}\). (English) Zbl 1448.05231 Ural Math. J. 3, No. 1, 27-32 (2017). MSC: 05E30 05C12 PDF BibTeX XML Cite \textit{K. S. Efimov} and \textit{A. A. Makhnev}, Ural Math. J. 3, No. 1, 27--32 (2017; Zbl 1448.05231) Full Text: DOI MNR OpenURL