×

Thermally-driven coalescence in thin liquid film flowing down a fibre. (English) Zbl 1489.76009

Summary: This paper presents a study on the dynamics of a thin liquid film flowing down a vertical cylindrical fibre under a streamwise thermal gradient. Previous works on isothermal flows have shown that the inlet flow and fibre geometry are the main factors that determine a transition from the absolute to the convective instability flow regimes. Our experiments demonstrate that an irregular wavy pattern and bead coalescence, which are commonly seen in the convective regime, can also be triggered by applying a thermal gradient along the fibre. We develop a lubrication model that accounts for gravity, temperature-dependent viscosity and surface tension to describe the thermal effects on downstream bead dynamics. Numerical simulations of the model show good agreement between the predicted droplet coalescence dynamics and the experimental data.

MSC:

76A20 Thin fluid films
76D08 Lubrication theory
76D45 Capillarity (surface tension) for incompressible viscous fluids
80A19 Diffusive and convective heat and mass transfer, heat flow
PDFBibTeX XMLCite
Full Text: DOI Link

References:

[1] Batson, W., Agnon, Y. & Oron, A.2017Thermocapillary modulation of self-rewetting films. J. Fluid Mech.819, 562-591. · Zbl 1383.76030
[2] Brackbill, J.U., Kothe, D.B. & Zemach, C.1992A continuum method for modeling surface tension. J. Comput. Phys.100 (2), 335-354. · Zbl 0775.76110
[3] Chang, H.-C. & Demekhin, E.A.1999Mechanism for drop formation on a coated vertical fibre. J. Fluid Mech.380, 233-255. · Zbl 0946.76029
[4] Chinju, H., Uchiyama, K. & Mori, Y.H.2000“String-of-beads” flow of liquids on vertical wires for gas absorption. AIChE J.46 (5), 937-945.
[5] Craster, R.V. & Matar, O.K.2006On viscous beads flowing down a vertical fibre. J. Fluid Mech.553, 85-105. · Zbl 1087.76030
[6] Ding, Z., Liu, Z., Liu, R. & Yang, C.2019Breakup of ultra-thin liquid films on vertical fiber enhanced by marangoni effect. Chem. Engng Sci.199, 342-348.
[7] Ding, Z., Liu, R., Wong, T.N. & Yang, C.2018Absolute instability induced by marangoni effect in thin liquid film flows on vertical cylindrical surfaces. Chem. Engng Sci.177, 261-269.
[8] Ding, Z. & Wong, T.N.2017Three-dimensional dynamics of thin liquid films on vertical cylinders with Marangoni effect. Phys. Fluids29 (1), 011701.
[9] Dong, L., Li, X. & Liu, R.2020Effect of thermocapillary on absolute and convective instability of film flow of self-rewetting fluid. Microgravity Sci. Technol.32, 415-422.
[10] Duprat, C., Ruyer-Quil, C. & Giorgiutti-Dauphiné, F.2009Spatial evolution of a film flowing down a fiber. Phys. Fluids21 (4), 042109. · Zbl 1183.76189
[11] Duprat, C., Ruyer-Quil, C., Kalliadasis, S. & Giorgiutti-Dauphiné, F.2007Absolute and convective instabilities of a viscous film flowing down a vertical fiber. Phys. Rev. Lett.98 (24), 244502. · Zbl 1151.76378
[12] Frenkel, A.L.1992Nonlinear theory of strongly undulating thin films flowing down vertical cylinders. Europhys. Lett.18 (7), 583.
[13] De Gennes, P.G.1985Wetting: statics and dynamics. Rev. Mod. Phys.57, 827-863.
[14] Haimovich, O. & Oron, A.2011Nonlinear dynamics of a thin nonisothermal liquid film on an axially oscillating cylindrical surface. Phys. Rev. E84 (6), 061605. · Zbl 1188.76059
[15] Hattori, K., Ishikawa, M. & Mori, Y.H.1994Strings of liquid beads for gas-liquid contact operations. AIChE J.40 (12), 1983-1992.
[16] Issa, R.I., Gosman, A.D. & Watkins, A.P.1986The computation of compressible and incompressible recirculating flows by a non-iterative implicit scheme. J. Comput. Phys.62 (1), 66-82. · Zbl 0575.76008
[17] Ji, H., Falcon, C., Sadeghpour, A., Zeng, Z., Ju, Y.S. & Bertozzi, A.L.2019Dynamics of thin liquid films on vertical cylindrical fibres. J. Fluid Mech.865, 303-327. · Zbl 1415.76150
[18] Ji, H., Sadeghpour, A., Ju, Y.S. & Bertozzi, A.L.2020aModelling film flows down a fibre influenced by nozzle geometry. J. Fluid Mech.901, R6. · Zbl 1460.76047
[19] Ji, H., Taranets, R. & Chugunova, M.2020b On travelling wave solutions of a model of a liquid film flowing down a fibre. arXiv:2006.04994.
[20] Ji, H. & Witelski, T.P.2017Finite-time thin film rupture driven by modified evaporative loss. Physica D342, 1-15. · Zbl 1378.76012
[21] Kabova, Y.O., Kuznetsov, V.V. & Kabov, O.A.2012Temperature dependent viscosity and surface tension effects on deformations of non-isothermal falling liquid film. Intl J. Heat Mass Transfer55 (4), 1271-1278. · Zbl 1262.80025
[22] Kalliadasis, S. & Chang, H.-C.1994Drop formation during coating of vertical fibres. J. Fluid Mech.261, 135-168. · Zbl 0818.76021
[23] Kliakhandler, I.L., Davis, S.H. & Bankoff, S.G.2001Viscous beads on vertical fibre. J. Fluid Mech.429, 381-390. · Zbl 0969.76030
[24] Liu, R., Chen, X. & Wang, X.2019Effects of thermocapillarity on the dynamics of an exterior coating flow of a self-rewetting fluid. Intl J. Heat Mass Transfer136, 692-701.
[25] Liu, R., Ding, Z. & Chen, X.2018The effect of thermocapillarity on the dynamics of an exterior coating film flow down a fibre subject to an axial temperature gradient. Intl J. Heat Mass Transfer123, 718-727.
[26] Liu, R., Ding, Z. & Zhu, Z.2017Thermocapillary effect on the absolute and convective instabilities of film flows down a fibre. Intl J. Heat Mass Transfer112, 918-925.
[27] Migita, H., Soga, K. & Mori, Y.H.2005Gas absorption in a wetted-wire column. AIChE J.51 (8), 2190-2198.
[28] Mills, A.F.1995Heat and Mass Transfer. Richard D. Irwin.
[29] Nozaki, T., Kaji, N. & Mod, Y.H.1998Heat transfer to a liquid flowing down vertical wires hanging in a hot gas stream: an experimental study of a new means of thermal energy recovery. Heat Transfer6, 63-68.
[30] Ruyer-Quil, C. & Kalliadasis, S.2012Wavy regimes of film flow down a fiber. Phys. Rev. E85 (4), 046302.
[31] Ruyer-Quil, C., Scheid, B., Kalliadasis, S., Velarde, M.G. & Zeytounian, R.K.2005Thermocapillary long waves in a liquid film flow. Part 1. Low-dimensional formulation. J. Fluid Mech.538, 199-222. · Zbl 1080.76009
[32] Ruyer-Quil, C., Treveleyan, P., Giorgiutti-Dauphiné, F., Duprat, C. & Kalliadasis, S.2008Modelling film flows down a fibre. J. Fluid Mech.603, 431-462. · Zbl 1151.76378
[33] Ruyer-Quil, C., Trevelyan, S.P.M.J., Giorgiutti-Dauphiné, F., Duprat, C. & Kalliadasis, S.2009Film flows down a fiber: modeling and influence of streamwise viscous diffusion. Eur. Phys. J. Spec. Top.166 (1), 89-92. · Zbl 1460.76186
[34] Sadeghpour, A., Oroumiyeh, F., Zhu, Y., Ko, D.D., Ji, H., Bertozzi, A.L. & Ju, Y.S.2021Experimental study of a string-based counterflow wet electrostatic precipitator for collection of fine and ultrafine particles. J. Air Waste Manage. Assoc.doi:10.1080/10962247.2020.1869627.
[35] Sadeghpour, A., Zeng, Z., Ji, H., Ebrahimi, N.D., Bertozzi, A.L. & Ju, Y.S.2019Water vapor capturing using an array of traveling liquid beads for desalination and water treatment. Sci. Adv.5 (4), eaav7662.
[36] Scheid, B., Kofman, N. & Rohlfs, W.2016Critical inclination for absolute/convective instability transition in inverted falling films. Phys. Fluids28 (4), 044107.
[37] 2005 Shin-etsu silicone silicone fluid dm-fluid performance test results. Retrieved from https://www.shinetsusilicone-global.com/catalog/pdf/kf96_us.pdf
[38] Trifonov, Y.Y.1992Steady-state traveling waves on the surface of a viscous liquid film falling down on vertical wires and tubes. AIChE J.38 (6), 821-834.
[39] Washburn, E.W.1921The dynamics of capillary flow. Phys. Rev.17 (3), 273.
[40] Whitaker, S.1972Forced convection heat transfer correlations for flow in pipes, past flat plates, single cylinders, single spheres, and for flow in packed beds and tube bundles. AIChE J.18 (2), 361-371.
[41] Zeng, Z., Sadeghpour, A. & Ju, Y.S.2018Thermohydraulic characteristics of a multi-string direct-contact heat exchanger. Intl J. Heat Mass Transfer126, 536-544.
[42] Zeng, Z., Sadeghpour, A. & Ju, Y.S.2019A highly effective multi-string humidifier with a low gas stream pressure drop for desalination. Desalination449, 92-100.
[43] Zeng, Z., Sadeghpour, A., Warrier, G. & Ju, Y.S.2017Experimental study of heat transfer between thin liquid films flowing down a vertical string in the Rayleigh-Plateau instability regime and a counterflowing gas stream. Intl J. Heat Mass Transfer108, 830-840.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.