×

Quantum evolution in terms of mechanical motion. (English) Zbl 1488.81032

Summary: Quantum tunneling is considered from the point of view of local realism. It is concluded that a quantum object tunneling through a potential barrier cannot be interpreted as a point-like particle because such an interpretation generates a contradiction with the impossibility of faster-than-light motion. Such a contradiction does not arise if a quantum object is considered as a continuous medium formed by the fields of matter. The dynamics law of the mechanical motion of these matter fields is derived from the quantum evolution law in the path integral form. The analysis of tunneling shows that this dynamics law has a form of the principle of least action on a complex time variable. The approach used here is not only a physical interpretation of quantum tunneling consistent with special relativity but is also applicable to the description of a wide range of quantum phenomena for which traditional research methods are impracticable.

MSC:

81S40 Path integrals in quantum mechanics
58D30 Applications of manifolds of mappings to the sciences
PDFBibTeX XMLCite
Full Text: DOI arXiv MNR

References:

[1] Einstein A., Podolsky B., Rosen N., “Can quantum mechanics description of physical reality be considered complete?”, Phys. Rev., 47:10 (1935), 777-780 · Zbl 0012.04201 · doi:10.1103/PhysRev.47.777
[2] von Neumann J., Mathematical Foundations of Quantum Mechanics, Springer, Berlin, 1996, x+262 pp. · Zbl 0906.00006 · doi:10.1007/978-3-642-61409-5
[3] Clouser J. F., Shimony A., “Bell”s theorem. Experimental tests and implications”, Rep. Prog. Phys., 41:12 (1978), 1881-1927 · doi:10.1088/0034-4885/41/12/002
[4] Clauser J. F., Hornen M. A., Shimony A., Holt R. A., “Proposed experiment to test local hidden-variable theories”, Phys. Rev. Lett., 23:15 (1969), 880-884 · Zbl 1371.81014 · doi:10.1103/PhysRevLett.23.880
[5] Freedman S. J., Clauser J. F., “Experimental test of local hidden-variable theories”, Phys. Rev. Lett., 28:14 (1972), 938-941 · doi:10.1103/PhysRevLett.28.938
[6] Aspect A., Grangier P., Roger G., “Experimental realization of Einstein-Podolsky-Rosen-Bohm Gedankenexperiment: A new violation of Bell”s inequalities”, Phys. Rev. Lett., 49:2 (1982), 91-94 · doi:10.1103/PhysRevLett.49.91
[7] Aspect A., “Bell”s inequality test: More ideal than ever”, Nature, 398:6724 (1999), 189-190 · doi:10.1038/18296
[8] Bell J. S., “On the Einstein Podolsky Rosen paradox”, Physics, 1:3 (1964), 195-200 · doi:10.1103/PhysicsPhysiqueFizika.1.195
[9] Eberhard P. H., “Bell”s theorem and the different concepts of locality”, Nuov. Cim. B, 46:2 (1978), 392-419 · Zbl 0978.81500 · doi:10.1007/bf02728628
[10] Ghirardi G. C., Weber T., “Quantum mechanics and faster-than-light communication: Methodological considerations”, Nuov. Cim. B, 78:1 (1983), 9-20 · doi:10.1007/BF02721378
[11] Gisin N., “Stochastic quantum dynamics and relativity”, Helvetica Physica Acta, 62:4 (1989), 363-371 · Zbl 0632.46068 · doi:10.5169/seals-116034
[12] MacColl L. A., “Note on the transmission and reflection of wave packets by potential barriers”, Phys. Rev., 40:4 (1932), 621-626 · JFM 58.1359.03 · doi:10.1103/PhysRev.40.621
[13] Hartman T. E., “Tunneling of a wave packet”, J. Appl. Phys., 33:12 (1962), 3427-3433 · doi:10.1063/1.1702424
[14] Ni H., Saalmann U., Rost J.-M., “Tunneling ionization time resolved by backpropagation”, Phys. Rev. Lett, 117:2 (2016), 02300 · doi:10.1103/physrevlett.117.023002
[15] Satya Sainadh U., et al., “Attosecond angular streaking and tunnelling time in atomic hydrogen”, Nature, 568:7750 (2019), 75-77 · doi:10.1038/s41586-019-1028-3
[16] Steinberg A. M., “How much time does a tunneling particle spend in the barrier region?”, Phys. Rev. Lett., 74:13 (1995), 2405-2409 · doi:10.1103/PhysRevLett.74.2405
[17] Zimmermann T., Mishra S., Doran B. R., Gordon D. F., Landsman A. S., “Tunneling time and weak measurement in strong field ionization”, Phys. Rev. Lett., 116:23 (2016), 233603 · doi:10.1103/PhysRevLett.116.233603
[18] Born M., “Zur Quantenmechanik der Stoßvorgänge”, Z. Phys., 37:2 (1926), 863-867 (In German) · JFM 52.0973.03 · doi:10.1007/BF01397477
[19] Schrödinger E., “Der stetige Ubergang von der Mikro- zur Makromechanik”, Naturwissenschaften, 14:28 (1926), 664-666 (In German) · JFM 52.0967.01 · doi:10.1007/BF01507634
[20] Bell J. S., “Against ‘measurement’”, Phys. World, 3:8 (1990), 33-40 · doi:10.1088/2058-7058/3/8/26
[21] Samarin A. Yu., “Nonlinear dynamics of open quantum systems”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 22:2 (2018), 214-224, arXiv: · Zbl 1424.81013 · doi:10.14498/vsgtu1582
[22] Samarin A. Yu., “Quantum evolution as a usual mechanical motion of peculiar continua”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 24:1 (2020), 7-21 · Zbl 1463.81018 · doi:10.14498/vsgtu1724
[23] Feynman R. P., “Space-time approach to non-relativistic quantum mechanics”, Rev. Mod. Phys., 20:2 (1948), 367-387 · Zbl 1371.81126 · doi:10.1103/RevModPhys.20.367
[24] Feynman R. P., Hibbs A. R., Quantum Mechanics and Path Integrals, Dover Publ., Mineola, NY, 2010, xii+371 pp. · Zbl 1220.81156
[25] J. Zinn-Justin, Path Integrals in Quantum Mechanics, Oxford Univ. Press, Oxford, 2005, xiii+318 pp. · Zbl 1068.81004
[26] Kac M., Probability and Related Topics in Physical Sciences, Lectures in Applied Mathematics, 1A, Interscience Publ., London, New York, 1959, xiii+266 pp. · Zbl 0087.33003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.