×

A numerical study of geometrical effects on solidification of a compound droplet on a cold flat surface. (English) Zbl 1492.76134

Summary: In this study, the solidification process of a compound droplet is numerically simulated by an axisymmetric front-tracking/finite difference technique. The compound droplet placed on a cold flat surface in a gas environment consists of an inner gas core surrounded by a concentric shell phase-change liquid that forms an outer droplet. The initial droplet shape assumed as a spherical cap is therefore determined by two wetting angles known as the inner wetting angle (\(\phi_{0i}\) for the inner core) and the outer wetting angle (\(\phi_{0o}\) for the outer droplet). During the solidification process, there is the presence of two three-junction points where a prescribed growth angle \(\varepsilon\) is specified. We analyze the solidification process undergoing the influence of the geometrical aspects of the compound droplet including the growth angle and the wetting angles. It is found that the outer wetting angle \(\phi_{0o}\) and the growth angle have a strong influence on the solidified droplet that the droplet height increases with an increase in \(\phi_{0o}\) or \(\varepsilon\) while the height increment decreases with an increase in \(\phi_{0o}\) or with a decrease in \(\varepsilon\). On the contrary, changing the shape of the inner core, in terms of \(\phi_{0i}\), does not affect the outer shape after complete solidification. The effects of these parameters on the solidification time are also considered.

MSC:

76T30 Three or more component flows
76M20 Finite difference methods applied to problems in fluid mechanics
80A22 Stefan problems, phase changes, etc.
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] McClements, DJ, Advances in fabrication of emulsions with enhanced functionality using structural design principles, Curr. Opin. Colloid Interface Sci., 17, 235-245 (2012) · doi:10.1016/j.cocis.2012.06.002
[2] Maan, AA; Schroën, K.; Boom, R., Spontaneous droplet formation techniques for monodisperse emulsions preparation - Perspectives for food applications, J. Food Eng., 107, 334-346 (2011) · doi:10.1016/j.jfoodeng.2011.07.008
[3] Bhagat, KD; Vu, TV; Wells, JC; Takakura, H.; Kawano, Y.; Ogawa, F., Production of hollow germanium alloy quasi-spheres through a coaxial nozzle, Jpn. J. Appl. Phys., 58 (2019) · doi:10.7567/1347-4065/ab1b59
[4] Dalili, N.; Edrisy, A.; Carriveau, R., A review of surface engineering issues critical to wind turbine performance, Renew. Sustain. Energy Rev., 13, 428-438 (2009) · doi:10.1016/j.rser.2007.11.009
[5] Vu, TV; Takakura, H.; Wells, JC; Minemoto, T., Production of hollow spheres of eutectic tin-lead solder through a coaxial nozzle, J. Solid Mech. Mater. Eng., 4, 1530-1538 (2010) · doi:10.1299/jmmp.4.1530
[6] Hochart, C.; Fortin, G.; Perron, J.; Ilinca, A., Wind turbine performance under icing conditions, Wind Energy, 11, 319-333 (2008) · doi:10.1002/we.258
[7] Cao, Y.; Wu, Z.; Su, Y.; Xu, Z., Aircraft flight characteristics in icing conditions, Prog. Aerosp. Sci., 74, 62-80 (2015) · doi:10.1016/j.paerosci.2014.12.001
[8] Huang, L.; Liu, Z.; Liu, Y.; Gou, Y.; Wang, L., Effect of contact angle on water droplet freezing process on a cold flat surface, Exp. Therm. Fluid Sci., 40, 74-80 (2012) · doi:10.1016/j.expthermflusci.2012.02.002
[9] Pan, Y.; Shi, K.; Duan, X.; Naterer, GF, Experimental investigation of water droplet impact and freezing on micropatterned stainless steel surfaces with varying wettabilities, Int. J. Heat Mass Transf., 129, 953-964 (2019) · doi:10.1016/j.ijheatmasstransfer.2018.10.032
[10] Zhang, H.; Jin, Z.; Jiao, M.; Yang, Z., Experimental investigation of the impact and freezing processes of a water droplet on different cold concave surfaces, Int. J. Therm. Sci., 132, 498-508 (2018) · doi:10.1016/j.ijthermalsci.2018.06.032
[11] Zhang, X.; Wu, X.; Min, J., Freezing and melting of a sessile water droplet on a horizontal cold plate, Exp. Therm. Fluid Sci., 88, 1-7 (2017) · doi:10.1016/j.expthermflusci.2017.05.009
[12] Stiti, M.; Castanet, G.; Labergue, A.; Lemoine, F., Icing of a droplet deposited onto a subcooled surface, Int. J. Heat Mass Transf., 159 (2020) · doi:10.1016/j.ijheatmasstransfer.2020.120116
[13] Satunkin, GA, Determination of growth angles, wetting angles, interfacial tensions and capillary constant values of melts, J. Cryst. Growth., 255, 170-189 (2003) · doi:10.1016/S0022-0248(03)01187-4
[14] Marin, AG; Enriquez, OR; Brunet, P.; Colinet, P.; Snoeijer, JH, Universality of tip singularity formation in freezing water drops, Phys. Rev. Lett., 113 (2014) · doi:10.1103/PhysRevLett.113.054301
[15] Schultz, W.W., Worster, M.G., anderson, D.M.: Solidifying sessile water droplets. In: Interactive Dynamics of Convection and Solidification. pp. 209-226. Kluwer Academic Publishers (2001)
[16] Virozub, A.; Rasin, IG; Brandon, S., Revisiting the constant growth angle: Estimation and verification via rigorous thermal modeling, J. Cryst. Growth., 310, 5416-5422 (2008) · doi:10.1016/j.jcrysgro.2008.09.004
[17] Zhang, C.; Zhang, H.; Fang, W.; Zhao, Y.; Yang, C., Axisymmetric lattice Boltzmann model for simulating the freezing process of a sessile water droplet with volume change, Phys. Rev. E., 101 (2020) · doi:10.1103/PhysRevE.101.023314
[18] Vu, TV; Tryggvason, G.; Homma, S.; Wells, JC, Numerical investigations of drop solidification on a cold plate in the presence of volume change, Int. J. Multiph. Flow., 76, 73-85 (2015) · doi:10.1016/j.ijmultiphaseflow.2015.07.005
[19] Shetabivash, H., Dolatabadi, A., Paraschivoiu, M.: A multiple level-set approach for modelling containerless freezing process. J. Comput. Phys. 109527 (2020). doi:10.1016/j.jcp.2020.109527 · Zbl 1440.76152
[20] Zhang, X.; Liu, X.; Wu, X.; Min, J., Simulation and experiment on supercooled sessile water droplet freezing with special attention to supercooling and volume expansion effects, Int. J. Heat Mass Transf., 127, 975-985 (2018) · doi:10.1016/j.ijheatmasstransfer.2018.07.021
[21] Chen, H.; Li, J.; Shum, HC; Stone, HA; Weitz, DA, Breakup of double emulsions in constrictions, Soft Matter, 7, 2345-2347 (2011) · doi:10.1039/C0SM01100B
[22] Liu, X.; Wang, C.; Zhao, Y.; Chen, Y., Shear-driven two colliding motions of binary double emulsion droplets, Int. J. Heat Mass Transf., 121, 377-389 (2018) · doi:10.1016/j.ijheatmasstransfer.2018.01.021
[23] Gao, P.; Feng, JJ, Spreading and breakup of a compound drop on a partially wetting substrate, J. Fluid Mech., 682, 415-433 (2011) · Zbl 1241.76159 · doi:10.1017/jfm.2011.235
[24] Kan, H-C; Udaykumar, HS; Shyy, W.; Tran-Son-Tay, R., Hydrodynamics of a compound drop with application to leukocyte modeling, Phys. Fluids., 10, 760-774 (1998) · doi:10.1063/1.869601
[25] Chen, Y.; Liu, X.; Zhang, C.; Zhao, Y., Enhancing and suppressing effects of an inner droplet on deformation of a double emulsion droplet under shear, Lab. Chip., 15, 1255-1261 (2015) · doi:10.1039/C4LC01231C
[26] Wang, J.; Liu, J.; Han, J.; Guan, J., Effects of Complex Internal Structures on Rheology of Multiple Emulsions Particles in 2D from a Boundary Integral Method, Phys. Rev. Lett., 110 (2013) · doi:10.1103/PhysRevLett.110.066001
[27] Chen, RH; Kuo, MJ; Chiu, SL; Pu, JY; Lin, TH, Impact of a compound drop on a dry surface, J. Mech. Sci. Technol., 21, 1886-1891 (2007) · doi:10.1007/BF03177445
[28] Tasoglu, S.; Kaynak, G.; Szeri, AJ; Demirci, U.; Muradoglu, M., Impact of a compound droplet on a flat surface: A model for single cell epitaxy, Phys. Fluids., 22 (2010) · doi:10.1063/1.3475527
[29] Zhu, S. (朱思琦), Kherbeche, A., Feng, Y. (冯玉萌), Thoraval, M.-J. (陶益壮): Impact of an air-in-liquid compound drop onto a liquid surface. Phys. Fluids. 32, 041705 (2020). doi:10.1063/5.0005702
[30] Vu, TV; Pham, PH, Numerical study of a compound droplet moving toward a rigid wall in an axisymmetric channel, Int. J. Heat Fluid Flow., 82 (2020) · doi:10.1016/j.ijheatfluidflow.2020.108542
[31] Liu, H.-R., Zhang, C.-Y., Gao, P., Lu, X.-Y., Ding, H.: On the maximal spreading of impacting compound drops. J. Fluid Mech. 854, (2018). doi:10.1017/jfm.2018.702 · Zbl 1415.76649
[32] Ho, NX; Vu, TV; Pham, BD, A numerical study of a liquid compound drop solidifying on a horizontal surface, Int. J. Heat Mass Transf., 165 (2021) · doi:10.1016/j.ijheatmasstransfer.2020.120713
[33] Abkarian, M.; Faivre, M.; Viallat, A., Swinging of Red Blood Cells under Shear Flow, Phys. Rev. Lett., 98 (2007) · doi:10.1103/PhysRevLett.98.188302
[34] Teh, S-Y; Lin, R.; Hung, L-H; Lee, AP, Droplet microfluidics. Lab. Chip., 8, 198-220 (2008) · doi:10.1039/B715524G
[35] Itoh, H.; Okamura, H.; Nakamura, C.; Abe, T.; Nakayama, M.; Komatsu, R., Growth of spherical Si crystals on porous Si3N4 substrate that repels Si melt, J. Cryst. Growth., 401, 748-752 (2014) · doi:10.1016/j.jcrysgro.2013.12.052
[36] Suzuki, S.; Nakajima, A.; Yoshida, N.; Sakai, M.; Hashimoto, A.; Kameshima, Y.; Okada, K., Freezing of water droplets on silicon surfaces coated with various silanes, Chem. Phys. Lett., 445, 37-41 (2007) · doi:10.1016/j.cplett.2007.07.066
[37] Zhang, H.; Zhao, Y.; Lv, R.; Yang, C., Freezing of sessile water droplet for various contact angles, Int. J. Therm. Sci., 101, 59-67 (2016) · doi:10.1016/j.ijthermalsci.2015.10.027
[38] Oberli, L.; Caruso, D.; Hall, C.; Fabretto, M.; Murphy, PJ; Evans, D., Condensation and freezing of droplets on superhydrophobic surfaces, Adv. Colloid Interface Sci., 210, 47-57 (2014) · doi:10.1016/j.cis.2013.10.018
[39] Anderson, DM; Worster, MG; Davis, SH, The case for a dynamic contact angle in containerless solidification, J. Cryst. Growth., 163, 329-338 (1996) · doi:10.1016/0022-0248(95)00970-1
[40] Cao, M.; Jiang, F.; Wang, C.; Cui, H.; Guo, C.; Chang, Y.; Wang, Z., Preparation, microstructure and mechanical property of double-layered metal-ceramic hollow spheres, Mater. Sci. Eng. A., 780 (2020) · doi:10.1016/j.msea.2020.139188
[41] Kumar, A.; Gu, S.; Tabbara, H.; Kamnis, S., Study of impingement of hollow ZrO 2 droplets onto a substrate, Surf. Coat. Technol., 220, 164-169 (2013) · doi:10.1016/j.surfcoat.2012.08.061
[42] Augustin, C. ed: Multifunctional metallic hollow sphere structures: manufacturing, properties and application. Springer (2009)
[43] Nadler, JH; Sanders, TH Jr; Cochran, JK, Aluminum hollow sphere processing, Mater. Sci. Forum., 331-337, 495-500 (2000) · doi:10.4028/www.scientific.net/MSF.331-337.495
[44] Felton, R.: Hollow metal spheres put Fraunhofer on a roll, http://www.sciencedirect.com/science/article/pii/S0026065710700187, (2009)
[45] Vu, TV, Fully resolved simulations of drop solidification under forced convection, Int. J. Heat Mass Transf., 122, 252-263 (2018) · doi:10.1016/j.ijheatmasstransfer.2018.01.124
[46] Vu, TV; Nguyen, CT; Luu, QH, Numerical study of a liquid drop on an inclined surface with solidification, Int. J. Heat Mass Transf., 144 (2019) · doi:10.1016/j.ijheatmasstransfer.2019.118636
[47] Zhang, X.; Liu, X.; Min, J.; Wu, X., Shape variation and unique tip formation of a sessile water droplet during freezing, Appl. Therm. Eng., 147, 927-934 (2019) · doi:10.1016/j.applthermaleng.2018.09.040
[48] Vu, TV, Deformation and breakup of a pendant drop with solidification, Int. J. Heat Mass Transf., 122, 341-353 (2018) · doi:10.1016/j.ijheatmasstransfer.2018.01.125
[49] Vu, TV; Truong, AV; Hoang, NTB; Tran, DK, Numerical investigations of solidification around a circular cylinder under forced convection, J. Mech. Sci. Technol., 30, 5019-5028 (2016) · doi:10.1007/s12206-016-1021-9
[50] Vu, TV; Wells, JC, Numerical simulations of solidification around two tandemly-arranged circular cylinders under forced convection, Int. J. Multiph. Flow., 89, 331-344 (2017) · doi:10.1016/j.ijmultiphaseflow.2016.11.007
[51] Minemoto, T.; Takakura, H., Fabrication of spherical silicon crystals by dropping method and their application to solar cells, Jpn. J. Appl. Phys., 46, 4016-4020 (2007) · doi:10.1143/JJAP.46.4016
[52] Tryggvason, G.; Bunner, B.; Esmaeeli, A.; Juric, D.; Al-Rawahi, N.; Tauber, W.; Han, J.; Nas, S.; Jan, Y-J, A front-tracking method for the computations of multiphase flow, J. Comput. Phys., 169, 708-759 (2001) · Zbl 1047.76574 · doi:10.1006/jcph.2001.6726
[53] Vu, TV; Tryggvason, G.; Homma, S.; Wells, JC; Takakura, H., A front-tracking method for three-phase computations of solidification with volume change, J. Chem. Eng. Jpn., 46, 726-731 (2013) · doi:10.1252/jcej.13we169
[54] Alekseenko, SV; Mendig, C.; Schulz, M.; Sinapius, M.; Prykhodko, OA, An experimental study of freezing of supercooled water droplet on solid surface, Tech. Phys. Lett., 42, 524-527 (2016) · doi:10.1134/S1063785016050187
[55] Vu, TV, Axisymmetric forced convection solidification of a liquid drop on a cold plate, Int. J. Multiph. Flow., 107, 104-115 (2018) · doi:10.1016/j.ijmultiphaseflow.2018.05.023
[56] Vu, TV; Dao, KV; Pham, BD, Numerical simulation of the freezing process of a water drop attached to a cold plate, J. Mech. Sci. Technol., 32, 2119-2126 (2018) · doi:10.1007/s12206-018-0421-4
[57] Vu, TV; Nguyen, CT; Khanh, DT, Direct numerical study of a molten metal drop solidifying on a cold plate with different wettability, Metals., 8, 47 (2018) · doi:10.3390/met8010047
[58] Ismail, MF; Waghmare, PR, Universality in freezing of an asymmetric drop, Appl. Phys. Lett., 109 (2016) · doi:10.1063/1.4971995
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.